Periodic Orbits near Equilibria

被引:1
作者
Barreira, Luis [1 ]
Llibre, Jaume [2 ]
Valls, Claudia [1 ]
机构
[1] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lyapunov, Weinstein, and Moser obtained remarkable theorems giving sufficient conditions for the existence of periodic orbits emanating from an equilibrium point of a differential system with a first integral. Using averaging theory, we establish a similar result for a differential system without assuming the existence of a first integral. Our result can also be interpreted as a kind of special Hopf bifurcation. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:1225 / 1236
页数:12
相关论文
共 11 条
[1]  
[Anonymous], DISCRETE CONTIN DY A
[2]  
[Anonymous], 1974, GRUNDLEHREN MATH WIS
[3]  
Guckenheimer J., 2013, J APPL MECH, P475, DOI [10.1098/rsif.2013.0237, DOI 10.1115/1.3167759]
[4]  
Meyer KR, 2009, APPL MATH SCI, V90, P1, DOI 10.1007/978-0-387-09724-4_1
[5]  
MOSER J, 1976, COMMUN PUR APPL MATH, V29, P724
[6]  
Sanders Jan A., 1985, APPL MATH SCI, V59
[7]  
Verhulst F, 1996, Nonlinear Differential Equations and Dynamical Systems
[8]   NORMAL MODES FOR NONLINEAR HAMILTONIAN SYSTEMS [J].
WEINSTEIN, A .
INVENTIONES MATHEMATICAE, 1973, 20 (01) :47-57
[9]   LAGRANGIAN SUBMANIFOLDS AND HAMILTONIAN SYSTEMS [J].
WEINSTEIN, A .
ANNALS OF MATHEMATICS, 1973, 98 (03) :377-410
[10]  
[No title captured]