Design and characterization of a low-loss, dispersion-flattened photonic crystal fiber for terahertz wave propagation

被引:35
作者
Islam, Md. Saiful [1 ]
Sultana, Jakeya [2 ]
Atai, Javid [3 ]
Islam, Mohammad Rakibul [2 ]
Abbott, Derek [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] Islamic Univ Technol, Dept Elect & Elect Engn, Gazipur 1704, Bangladesh
[3] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
来源
OPTIK | 2017年 / 145卷
关键词
Terahertz; Photonic crystal fibers; Dispersion; Micro-structured fibers; Effective material loss; POLYMER OPTICAL-FIBER; POROUS FIBER; THZ REGIME; BROAD-BAND; TRANSMISSION; GUIDANCE; POLARIZATION; GUIDES;
D O I
10.1016/j.ijleo.2017.07.061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A porous core photonic crystal fiber, based on Topas, with ultra-low effective material loss and near zero flattened dispersion properties is proposed for efficient polarization preserving transmission of terahertz waves. The Finite Element Method (FEM) with a Perfectly Matched Layer (PML) boundary condition is used to compute the modal characteristics of the fiber that confirms a lower Effective Material Loss (EML) of 0.034 cm(-1), lower confinement loss of the order of 10(-3.7) cm(-1), higher effective mode area of 0.6 x 10(6) mu m(2) and a flattened dispersion variation of 0.09 ps/THz/cm. In addition, some other characteristics including birefringence, single mode operation, core power fraction and Figure of Merit (FOM) of the proposed fiber are also discussed. To simplify the fabrication process, only circular shaped air holes with a conventional hexagonal structure in the cladding is deployed. It is anticipated that, this newly proposed waveguide will open a new window for further terahertz research and broadband transmission of terahertz radiation. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:398 / 406
页数:9
相关论文
共 39 条
[1]   Scanning the issue: T-ray imaging, sensing, and retection [J].
Abbott, Derek ;
Zhang, Xi-Cheng .
PROCEEDINGS OF THE IEEE, 2007, 95 (08) :1509-1513
[2]   Design and Characterization of Porous Core Polarization Maintaining Photonic Crystal Fiber for THz Guidance [J].
Aming, Asmar ;
Uthman, Muhammad ;
Chitaree, Ratchapak ;
Mohammed, Waleed ;
Rahman, B. M. Azizur .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (23) :5583-5590
[3]   Terahertz dielectric waveguides [J].
Atakaramians, Shaghik ;
Afshar, Shahraam V. ;
Monro, Tanya M. ;
Abbott, Derek .
ADVANCES IN OPTICS AND PHOTONICS, 2013, 5 (02) :169-215
[4]   Transmission terahertz waveguide-based imaging below the diffraction limit [J].
Awad, MM ;
Cheville, RA .
APPLIED PHYSICS LETTERS, 2005, 86 (22) :1-3
[5]   A porous terahertz fiber with randomly distributed air holes [J].
Bai, J. J. ;
Li, J. N. ;
Zhang, H. ;
Fang, H. ;
Chang, S. J. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 103 (02) :381-386
[6]   Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy [J].
Balakrishnan, Jegathisvaran ;
Fischer, Bernd M. ;
Abbott, Derek .
APPLIED OPTICS, 2009, 48 (12) :2262-2266
[7]  
Bao H L., 2015, Scientific Reports, V5, P1
[8]   Fabrication and characterization of porous-core honeycomb bandgap THz fibers [J].
Bao, Hualong ;
Nielsen, Kristian ;
Rasmussen, Henrik K. ;
Jepsen, Peter Uhd ;
Bang, Ole .
OPTICS EXPRESS, 2012, 20 (28) :29507-29517
[9]  
Bisen R. T., 2005, OPT FIB COMM C
[10]   High-birefringence, low-loss porous fiber for single-mode terahertz-wave guidance [J].
Chen, Na-na ;
Liang, Jian ;
Ren, Li-yong .
APPLIED OPTICS, 2013, 52 (21) :5297-5302