Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO3 composite films: a self-powered utility system for portable electronics

被引:66
作者
Dudem, Bhaskar [1 ]
Bharat, L. Krishna [1 ,2 ]
Patnam, Harishkumarreddy [1 ]
Mule, Anki Reddy [1 ]
Yu, Jae Su [1 ]
机构
[1] Kyung Hee Univ, Inst Wearable Convergence Elect, Dept Elect Engn, 1732 Deogyeong Daero, Yongin 446701, Gyeonggi Do, South Korea
[2] Sechenov Univ, Inst Mol Med, Ctr Biomed Engn, Moscow 119991, Russia
基金
新加坡国家研究基金会;
关键词
TRIBOELECTRIC NANOGENERATORS; ENERGY-CONVERSION; TRANSPARENT; ENHANCEMENT;
D O I
10.1039/c8ta04612c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Enhancing the output performance of nanogenerators using composite films consisting of a piezoelectric material embedded into polymers has gained much attention over the last few years. Such composite films can provide a high surface charge density and dielectric permittivity, which can further efficiently enhance the performance of nanogenerators. We, for the first time, employed aluminum (Al)-doped barium titanate (BaTiO3; ABTO) particles to enhance the performance of nanogenerators. These ABTO particles were synthesized via a solid-state technique, and the effect of Al dopant concentration on their crystallinity and ferroelectric properties was systematically investigated. However, the BTO particles with 2% Al dopant concentration exhibited a high remnant polarization and piezoelectric coefficient, and they were further employed to efficiently enhance the output performance of the hybrid piezo/triboelectric nanogenerators. For this, these ABTO particles were first mixed with polydimethylsiloxane (PDMS) to prepare a composite film. Next, the ABTO/PDMS composite film was employed as a piezoelectric material and triboelectric material of the hybrid nanogenerator (HNG) and exhibited a high output performance owing to their synergetic effects. In addition, the influence of the surface roughness of the composite film on the performance of the HNG was also investigated and optimized. Consequently, the HNG device with the rough surface ABTO/PDMS composite film exhibited maximal open-circuit voltage, short-circuit current, and power density values of approximate to 945 V, approximate to 59.8 A, and approximate to 42.4 W m(-2), respectively. For practical device application, the stable and high electrical power generated from the HNG device was employed to light several light-emitting diodes and power portable electronic devices.
引用
收藏
页码:16101 / 16110
页数:10
相关论文
共 33 条
[1]   Enhancement of piezoelectric and ferroelectric properties of BaTiO3 ceramics by aluminum doping [J].
Ali, Ahmed I. ;
Ahn, Chang Won ;
Kim, Yong Soo .
CERAMICS INTERNATIONAL, 2013, 39 (06) :6623-6629
[2]   Ceramic-polymer composites with high dielectric constant [J].
Arbatti, Milind ;
Shan, Xiaobing ;
Cheng, Zhongyang .
ADVANCED MATERIALS, 2007, 19 (10) :1369-+
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[5]   Piezoelectric nanogenerators - a review of nanostructured piezoelectric energy harvesters [J].
Briscoe, Joe ;
Dunn, Steve .
NANO ENERGY, 2015, 14 :15-29
[6]   Hierarchical Ag/TiO2/Si Forest-Like Nano/Micro-Architectures as Antireflective, Plasmonic Photocatalytic, and Self-Cleaning Coatings [J].
Dudem, Bhaskar ;
Bharat, L. Krishna ;
Leem, Jung Woo ;
Kim, Dong Hyun ;
Yu, Jae Su .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (02) :1580-1591
[7]   Nanopillar-array architectured PDMS-based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting [J].
Dudem, Bhaskar ;
Nghia Dinh Huynh ;
Kim, Wook ;
Kim, Dong Hyun ;
Hwang, Hee Jae ;
Choi, Dukhyun ;
Yu, Jae Su .
NANO ENERGY, 2017, 42 :269-281
[8]   CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers [J].
Dudem, Bhaskar ;
Heo, Jin Hyuck ;
Leem, Jung Woo ;
Yu, Jae Su ;
Im, Sang Hyuk .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (20) :7573-7579
[9]   Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template [J].
Dudem, Bhaskar ;
Ko, Yeong Hwan ;
Leem, Jung Woo ;
Lee, Soo Hyun ;
Yu, Jae Su .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) :20520-20529
[10]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114