Potentiodynamic electrochemical impedance spectroscopy

被引:83
|
作者
Ragoisha, GA [1 ]
Bondarenko, AS [1 ]
机构
[1] Belarusian State Univ, Phytochem Res Inst, Minsk 220050, BELARUS
关键词
electrochemical impedance; PDEIS; underpotential deposition; bismuth; electropolymerisation; polyaniline;
D O I
10.1016/j.electacta.2004.10.055
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Potentiodynamic electrochemical impedance spectroscopy (PDEIS) uses virtual instruments to acquire, by means of a common potentiostat, multidimensional dependencies that characterise variations of dc current and frequency response in the same potential scan. Unlike classical EIS, which finds the whole equivalent circuit in stationary states, PDEIS finds, in potentiodynamic systems, only those elements of equivalent circuits that are needed to decompose the ac response in a limited range of frequencies. The decomposition of ac response into components belonging to different elements is provided by a built-in spectrum analyser, which gives dependences of equivalent circuit parameters on variable potential. The new technique develops the idea, originally suggested by D.E. Smith, of versatile characterisation of the electrochemical response in a simple computerised experiment. PDEIS solves this problem with the use of multi-frequency potentiodynamic probing based on analysis of streams of wavelets. The use of the additional variable (electrode potential) helps to disambiguate the equivalent circuit analysis. The PDEIS performance is illustrated on systems of different kind: a reversible system (ferricyanide redox transformations on glassy carbon and platinum electrodes), a system that is locally reversible but shows different responses in forward and backward scans (Bi upd on Au) and strongly irreversible variable system (initial stages of aniline electropolymerisation on gold). (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1553 / 1563
页数:11
相关论文
共 50 条
  • [31] A comparative study of critical pitting temperature (CPT) of stainless steels by electrochemical impedance spectroscopy (EIS), potentiodynamic and potentiostatic techniques
    Ebrahimi, N.
    Momeni, M.
    Kosari, A.
    Zakeri, M.
    Moayed, M. H.
    CORROSION SCIENCE, 2012, 59 : 96 - 102
  • [32] Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements
    Yavarinasab, Adel
    Abedini, Mostafa
    Tahmooressi, Hamed
    Janfaza, Sajjad
    Tasnim, Nishat
    Hoorfar, Mina
    POLYMERS, 2022, 14 (01)
  • [33] Electrochemical Impedance Spectroscopy of Nanopores
    Talaga, David S.
    Vitarelli, Michael J.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 521A - 521A
  • [34] Electrochemical impedance spectroscopy of polyalkylterthiophenes
    Tarola, A
    Dini, D
    Salatelli, E
    Andreani, F
    Decker, F
    ELECTROCHIMICA ACTA, 1999, 44 (24) : 4189 - 4193
  • [35] A tutorial on electrochemical impedance spectroscopy
    Orazem, Mark E.
    Tribollet, Bernard
    CHEMTEXTS, 2020, 6 (02)
  • [36] Modeling electrochemical impedance spectroscopy
    Ciucci, Francesco
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 13 : 132 - 139
  • [37] A tutorial on electrochemical impedance spectroscopy
    Mark E. Orazem
    Bernard Tribollet
    ChemTexts, 6
  • [38] ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY AT AN ULTRAMICROELECTRODE
    BRUCE, PG
    LISOWSKAOLEKSIAK, A
    LOS, P
    VINCENT, CA
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 367 (1-2): : 279 - 283
  • [39] Electrochemical Impedance Spectroscopy and Potentiodynamic Polarization Studies Affected by the Microstructure Array of a Monotectic Al-Pb Alloy in a NaCl Solution
    Osorio, Wislei R.
    Freitas, Emmanuelle S.
    Garcia, Amauri
    CORROSION, 2014, 70 (10) : 1031 - 1042
  • [40] Electrochemical impedance spectroscopy for better electrochemical measurements
    Park, SM
    Yoo, JS
    ANALYTICAL CHEMISTRY, 2003, 75 (21) : 455A - 461A