Critical point theorem for asymptotically quadratic functional without compactness

被引:0
作者
Liang, Zhanping [1 ,2 ]
Su, Jiabao [2 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
关键词
Quadratic functional; Critical group; Critical point; Morse theory; RESONANCE; EQUATIONS;
D O I
10.1016/j.jmaa.2010.04.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we build an abstract critical point theorem for the asymptotically quadratic functional without compactness. Application is devoted to the existence of nontrivial periodic solution of second order Hamiltonian systems. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:649 / 658
页数:10
相关论文
共 16 条
[1]  
AMMAN H, 1980, ANN SCUOLA NORM SUP, V7, P539
[2]  
[Anonymous], 1986, MINIMAX METHODS CRIT
[3]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[4]  
Chang K.-C., 1993, INFIN DIMENS ANAL QU, DOI DOI 10.1007/978-1-4612-0385-8
[5]   SOLUTIONS OF ASYMPTOTICALLY LINEAR OPERATOR-EQUATIONS VIA MORSE-THEORY [J].
CHANG, KC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (05) :693-712
[6]  
Gromoll D., 1969, Topology, V8, P361
[7]  
LANDESMAN EM, 1970, J MATH MECH, V19, P609
[8]  
Li Shujie, 1996, ABSTR APPL ANAL, V1, P277
[9]  
Li SJ, 1999, HOUSTON J MATH, V25, P563
[10]  
Liu J., 1984, Kexue Tongbao Chin, V29, P1025