Analytic continuation of quantum Monte Carlo data by stochastic analytical inference

被引:67
作者
Fuchs, Sebastian [1 ]
Pruschke, Thomas [1 ]
Jarrell, Mark [2 ]
机构
[1] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany
[2] Louisiana State Univ, Baton Rouge, LA 70803 USA
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 05期
基金
美国国家科学基金会;
关键词
MAXIMUM-ENTROPY; DYNAMICS;
D O I
10.1103/PhysRevE.81.056701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy calculation.
引用
收藏
页数:8
相关论文
共 21 条
[1]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[2]  
[Anonymous], PROBABILITY STAT
[3]  
[Anonymous], 1998, PHYS REV B
[4]  
[Anonymous], ARXIVCONDMAT0403055
[5]   MAXIMUM-ENTROPY ANALYSIS OF OVERSAMPLED DATA PROBLEMS [J].
BRYAN, RK .
EUROPEAN BIOPHYSICS JOURNAL, 1990, 18 (03) :165-174
[6]   QUANTUM MONTE-CARLO SIMULATIONS AND MAXIMUM-ENTROPY - DYNAMICS FROM IMAGINARY-TIME DATA [J].
GUBERNATIS, JE ;
JARRELL, M ;
SILVER, RN ;
SIVIA, DS .
PHYSICAL REVIEW B, 1991, 44 (12) :6011-6029
[7]  
GULL SF, 1988, MAXIMUM ENTROPY BAYE, V1, P53
[8]   Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems [J].
Hettler, MH ;
Mukherjee, M ;
Jarrell, M ;
Krishnamurthy, HR .
PHYSICAL REVIEW B, 2000, 61 (19) :12739-12756
[9]   Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data [J].
Jarrell, M ;
Gubernatis, JE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 269 (03) :133-195
[10]  
Jaynes E.T., 1986, MAXIMUM ENTROPY BAYE, P1, DOI DOI 10.1017/CBO9780511569678.003