Large deviations principle for the invariant measures of the 2D stochastic Navier-Stokes equations on a torus

被引:19
作者
Brzezniak, Z. [1 ]
Cerrai, S. [2 ]
机构
[1] Univ York, Dept Math, York Y010 5DD, N Yorkshire, England
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Stochastic Navier-Stokes; Large deviations; Invariant measures; Quasipotential; NOISE; ERGODICITY;
D O I
10.1016/j.jfa.2017.05.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove here the validity of a large deviation principle for the family of invariant measures associated to a two dimensional Navier-Stokes equation on a torus, perturbed by a smooth additive noise. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1891 / 1930
页数:40
相关论文
共 27 条
[1]  
[Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
[2]   Langevin Dynamics, Large Deviations and Instantons for the Quasi-Geostrophic Model and Two-Dimensional Euler Equations [J].
Bouchet, Freddy ;
Laurie, Jason ;
Zaboronski, Oleg .
JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (06) :1066-1092
[3]   Stochastic nonlinear beam equations [J].
Brzezniak, Z ;
Maslowski, B ;
Seidler, J .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (01) :119-149
[4]   Quasipotential and exit time for 2D Stochastic Navier-Stokes equations driven by space time white noise [J].
Brzezniak, Z. ;
Cerrai, S. ;
Freidlin, M. .
PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (3-4) :739-793
[5]   Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem [J].
Brzezniak, Z ;
van Neerven, J .
STUDIA MATHEMATICA, 2000, 143 (01) :43-74
[6]  
Brzezniak Z., EXPONENTIAL ES UNPUB
[7]   Asymptotic compactness and absorbing sets for 2D stochastic Navier- Stokes equations on some unbounded domains [J].
Brzezniak, Zdzislaw ;
Li, Yuhong .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) :5587-5629
[8]  
Brzezsniak Z., 1999, CMS C P, V28
[9]   Large deviations for invariant measures of stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term [J].
Cerrai, S ;
Röckner, M .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (01) :69-105
[10]  
Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, V152, DOI 10.1017/CBO9780511666223