Hop Dominating Sets in Graphs Under Binary Operations

被引:43
作者
Canoy, Sergio R., Jr. [1 ]
Mollejon, Reynaldo, V [2 ]
Canoy, John Gabriel E.
机构
[1] MSU Iligan Inst Technol, Premier Res Inst Sci & Math, Ctr Graph Theory Algebra & Anal, Dept Math & Stat,Coll Sci & Math, Iligan, Philippines
[2] Visayas State Univ Villaba, Dept Teacher Educ, Villaba, Leyte, Philippines
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2019年 / 12卷 / 04期
关键词
Domination; hop domination; join; corona; lexicographic product;
D O I
10.29020/nybg.ejpam.v12i4.3550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a (simple) connected graph with vertex and edge sets V(G) and E(G), respectively. A set S subset of V (G) is a hop dominating set of G if for each v is an element of V(G) \ S, there exists w is an element of S such that d(G) (v, w) = 2. The minimum cardinality of a hop dominating set of G, denoted by gamma(h) (G), is called the hop domination number of G. In this paper we revisit the concept of hop domination, relate it with other domination concepts, and investigate it in graphs resulting from some binary operations.
引用
收藏
页码:1455 / 1463
页数:9
相关论文
共 7 条
[1]   Bounds on the hop domination number of a tree [J].
Ayyaswamy, S. K. ;
Krishnakumari, B. ;
Natarajan, C. ;
Venkatakrishnan, Y. B. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04) :449-455
[2]  
Canoy SR, 2017, ADV APPL DISCRET MAT, V18, P179, DOI 10.17654/DM018020179
[3]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT, V1st, DOI [10.1201/9781482246582, DOI 10.1201/9781482246582]
[4]  
Haynes T. W., 1998, DOMINATION GRAPHS AD
[5]   On 2-Step and Hop Dominating Sets in Graphs [J].
Henning, Michael A. ;
Rad, Nader Jafari .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :913-927
[6]   Hop Domination in Graphs-II [J].
Natarajan, C. ;
Ayyaswamy, S. K. .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02) :187-199
[7]  
Pabilona Y., 2018, ASIAN EUROPEAN J MAT, V11, P11