Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms

被引:10
|
作者
Ghoneim, Mohamed S. [1 ]
Gadallah, Samar I. [1 ]
Said, Lobna A. [1 ]
Eltawil, Ahmed M. [2 ,3 ]
Radwan, Ahmed G. [4 ,5 ]
Madian, Ahmed H. [1 ,6 ]
机构
[1] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[2] Univ Calif Irvine, Elect Engn & Comp Sci Dept, Irvine, CA USA
[3] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia
[4] Cairo Univ, Engn Math & Phys Dept, Giza, Egypt
[5] Nile Univ, Sch Engn & Appl Sci, Giza, Egypt
[6] Egyptian Atom Energy Author NCRRT, Radiat Engn Dept, Cairo, Egypt
关键词
ELECTRICAL-IMPEDANCE ANALYSIS; COLE BIOIMPEDANCE MODEL; DYNAMICS; FRUIT;
D O I
10.1038/s41598-022-06737-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared with three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, and Fractional-order Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem. Experiments are conducted on two samples of three different medical plant species from the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the range of 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to verify the efficiency of the proposed models in modeling the plant stem tissue. The proposed models give the best results in all inter-electrode spacing distances. Four different metaheuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms
    Mohamed S. Ghoneim
    Samar I. Gadallah
    Lobna A. Said
    Ahmed M. Eltawil
    Ahmed G. Radwan
    Ahmed H. Madian
    Scientific Reports, 12
  • [2] Parameter Meta-optimization of Metaheuristic Optimization Algorithms
    Neumueller, Christoph
    Wagner, Stefan
    Kronberger, Gabriel
    Affenzeller, Michael
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 367 - 374
  • [3] Stochastic Modeling and Performance Optimization of Marine Power Plant with Metaheuristic Algorithms
    Saini, Monika
    Patel, Bhavan Lal
    Kumar, Ashish
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2023, 22 (04) : 751 - 761
  • [4] Stochastic Modeling and Performance Optimization of Marine Power Plant with Metaheuristic Algorithms
    Monika Saini
    Bhavan Lal Patel
    Ashish Kumar
    Journal of Marine Science and Application, 2023, 22 : 751 - 761
  • [5] Plant intelligence based metaheuristic optimization algorithms
    Sinem Akyol
    Bilal Alatas
    Artificial Intelligence Review, 2017, 47 : 417 - 462
  • [6] Plant intelligence based metaheuristic optimization algorithms
    Akyol, Sinem
    Alatas, Bilal
    ARTIFICIAL INTELLIGENCE REVIEW, 2017, 47 (04) : 417 - 462
  • [7] Accurate parameter identification of proton exchange membrane fuel cell models using different metaheuristic optimization algorithms
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Alqahtani, Mohammed
    Khalid, Muhammad
    Diab, Ahmed A. Zaki
    ENERGY REPORTS, 2023, 10 : 4824 - 4848
  • [8] Parameter Identification of Rheological Models Using Optimization Algorithms
    Pistek, V.
    Novotny, P.
    Mauder, T.
    Klimes, L.
    MECHATRONICS 2013: RECENT TECHNOLOGICAL AND SCIENTIFIC ADVANCES, 2014, : 193 - 198
  • [9] Application of Metaheuristic Algorithms in Nano-process Parameter Optimization
    Norlina, M. S.
    Mazidah, P.
    Sin, N. D. Md
    Rusop, M.
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 2625 - 2630
  • [10] Gene Clustering Using Metaheuristic Optimization Algorithms
    Banu, P. K. Nizar
    Andrews, S.
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2015, 6 (04) : 14 - 38