Quantum information scrambling and entanglement in bipartite quantum states

被引:10
作者
Sharma, Kapil K. [1 ]
Gerdt, Vladimir P. [2 ]
机构
[1] DY Patil Int Univ, Sect 29, Pune 411044, Maharashtra, India
[2] Joint Inst Nucl Res, 6 Joliot Curie St, Dubna 141980, Russia
关键词
Quantum information scrambling; Uhlmann fidelity; Bures metric; Concurrence; OTOC; Balancing points; QUBIT-QUTRIT; DYNAMICS; SYSTEMS; THEOREM;
D O I
10.1007/s11128-021-03138-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Investigating the influence of quantum information (QI) scrambling on quantum correlations in a physical system is an interesting problem. In this article, we establish the mathematical connections among the quantifiers known as quantum information scrambling, Uhlmann fidelity, Bures metric and bipartite concurrence. We study these connections via four-point out-of-time-order correlation function used for quantum information scrambling. Further, we study the dynamics of all the quantifiers and investigate the influence of QI scrambling on entanglement in two qubits prepared in Bell states. We also investigate the QI scrambling and entanglement balancing points in Bell states under Ising Hamiltonian.
引用
收藏
页数:16
相关论文
共 37 条
[1]   The early proofs of the theorem of Campbell, Baker, Hausdorff, and Dynkin [J].
Achilles, Ruediger ;
Bonfiglioli, Andrea .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2012, 66 (03) :295-358
[2]   Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction [J].
Boeing, Geoff .
SYSTEMS, 2016, 4 (04)
[4]  
Cencini M., 2010, SIMPLE MODELS COMPLE
[5]   Out-of-Time-Ordered Density Correlators in Luttinger Liquids [J].
Dora, Balazs ;
Moessner, Roderich .
PHYSICAL REVIEW LETTERS, 2017, 119 (02)
[6]   Topics in Noncommutative Algebra The Theorem of Campbell, Baker, Hausdorff and Dynkin Preface [J].
Bonfiglioli, Andrea ;
Fulci, Roberta .
TOPICS IN NONCOMMUTATIVE ALGEBRA: THE THEOREM OF CAMPBELL, BAKER, HAUSDORFF AND DYNKIN, 2012, 2034 :VII-+
[7]  
Ghys E., 2015, P 12 INT C MATH ED, P19
[8]  
Haake F, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-05428-0
[9]   Black holes as mirrors: quantum information in random subsystems [J].
Hayden, Patrick ;
Preskill, John .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09)
[10]   Entanglement of a pair of quantum bits [J].
Hill, S ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5022-5025