A noisy-smoothing relevance feedback method for content-based medical image retrieval

被引:10
作者
Huang, Yonggang [1 ,2 ]
Huang, Heyan [1 ,2 ]
Zhang, Jun [3 ]
机构
[1] Beijing Inst Technol, Beijing Engn Res Ctr High Volume Language Informa, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Deakin Univ, Sch Informat Technol, Geelong, Vic 3217, Australia
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
CBIR; Relevance feedback; Noisy elimination; Fuzzy membership function; Noisy-smoothing; CLASSIFICATION; CLASSIFIERS; FRAMEWORK;
D O I
10.1007/s11042-013-1685-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we address a new problem of noisy images which present in the procedure of relevance feedback for medical image retrieval. We concentrate on the noisy images, caused by the users mislabeling some irrelevant images as relevant ones, and a noisy-smoothing relevance feedback (NS-RF) method is proposed. In NS-RF, a two-step strategy is proposed to handle the noisy images. In step 1, a noisy elimination algorithm is adopted to identify and eliminate the noisy images. In step 2, to further alleviate the influence of noisy images, a fuzzy membership function is employed to estimate the relevance probabilities of retained relevant images. After noisy handling, the fuzzy support vector machine, which can take into account different relevant images with different relevance probabilities, is adopted to re-rank the images. The experimental results on the IRMA medical image collection demonstrate that the proposed method can deal with the noisy images effectively.
引用
收藏
页码:1963 / 1981
页数:19
相关论文
共 40 条
[1]  
[Anonymous], 1971, The SMART Retrieval System-Experiments in Automatic Document Processing
[2]   A naive relevance feedback model for content-based image retrieval using multiple similarity measures [J].
Arevalillo-Herraez, Miguel ;
Ferri, Francesc J. ;
Domingo, Juan .
PATTERN RECOGNITION, 2010, 43 (03) :619-629
[3]  
Belkhatir M, 2005, LECT NOTES COMPUT SC, V3568, P528
[4]   Overview of the MPEG-7 standard [J].
Chang, SF ;
Sikora, T ;
Puri, A .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2001, 11 (06) :688-695
[5]   The Bayesian image retrieval system, PicHunter:: Theory, implementation, and psychophysical experiments [J].
Cox, IJ ;
Miller, ML ;
Minka, TP ;
Papathomas, TV ;
Yianilos, PN .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (01) :20-37
[6]   Speeding up active relevance feedback with approximate kNN retrieval for hyperplane queries [J].
Crucianu, Michel ;
Estevez, Daniel ;
Oria, Vincent ;
Tarel, Jean-Philippe .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2008, 18 (2-3) :150-159
[7]  
Deselaers T, 2008, INT C PATT RECOG, P2100
[8]   Relevance feedback based on genetic programming for image retrieval [J].
Ferreira, C. D. ;
Santos, J. A. ;
Torres, R. da S. ;
Goncalves, M. A. ;
Rezende, R. C. ;
Fan, Weiguo .
PATTERN RECOGNITION LETTERS, 2011, 32 (01) :27-37
[9]  
Giacinto G, 2008, STUD COMPUT INTELL, V73, P419
[10]   Medical image categorization and retrieval for PACS using the GMM-KL framework [J].
Greenspan, Hayit ;
Pinhas, Adi T. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2007, 11 (02) :190-202