Identities of the left-symmetric Witt algebras

被引:9
作者
Kozybaev, Daniyar [1 ]
Umirbaev, Ualbai [1 ,2 ]
机构
[1] Eurasian Natl Univ, Astana, Kazakhstan
[2] Wayne State Univ, Detroit, MI 48202 USA
关键词
Algebras of derivations; left-symmetric algebras; identities; free algebras; multiplication algebras;
D O I
10.1142/S021819671650017X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-n = k[x(1), x(2),..., x(n)] be the polynomial algebra over a field k of characteristic zero in the variables x(1), x(2),..., x(n) and L-n be the left-symmetric Witt algebra of all derivations of Pn [D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4(3) (2006) 323-357]. We describe all right operator identities of L-n and prove that the set of all algebras L-n, where n >= 1, generates the variety of all left-symmetric algebras. We also describe a class of general (not only right operator) identities for L-n.
引用
收藏
页码:435 / 450
页数:16
相关论文
共 15 条
[1]   MINIMAL IDENTITIES FOR ALGEBRAS [J].
AMITSUR, AS ;
LEVITZKI, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 1 (04) :449-463
[2]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323
[3]   Classification of Novikov algebras [J].
Burde, Dietrich ;
de Graaf, Willem .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (01) :1-15
[4]   Minimal identities for right-symmetric algebras [J].
Dzhumadil'daev, A .
JOURNAL OF ALGEBRA, 2000, 225 (01) :201-230
[5]   On right symmetric and Novikov nil-algebras of bounded index [J].
Filippov, VT .
MATHEMATICAL NOTES, 2001, 70 (1-2) :258-263
[6]   Z-graded identities of the Lie algebra W1 [J].
Freitas, Jose A. ;
Koshlukov, Plamen ;
Krasilnikov, Alexei .
JOURNAL OF ALGEBRA, 2015, 427 :226-251
[7]   THE FREIHEITSSATZ AND THE AUTOMORPHISMS OF FREE RIGHTSYMMETRIC ALGEBRAS [J].
Kozybaev, Daniyar ;
Makar-Limanov, Leonid ;
Umirbaev, Ualbai .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2008, 1 (02) :243-254
[8]  
Makar-Limanov L, 2011, TWMS J PURE APPL MAT, V2, P228
[9]  
Malcev J. N., 1971, Algebra i Logika, V10, P393
[10]  
Razmyslov Yu. P., 1994, TRANSLATIONS MATH MO, V138