BioFlow: a non-invasive, image-based method to measure speed, pressure and forces inside living cells

被引:21
作者
Boquet-Pujadas, Aleix [1 ,2 ]
Lecomte, Timothee [1 ,2 ]
Manich, Maria [1 ,2 ]
Thibeaux, Roman [3 ,4 ,5 ]
Labruyere, Elisabeth [1 ,2 ]
Guillen, Nancy [3 ,4 ,6 ]
Olivo-Marin, Jean-Christophe [1 ,2 ]
Dufour, Alexandre C. [1 ,2 ]
机构
[1] Inst Pasteur, Bioimage Anal Unit, Paris, France
[2] CNRS UMR3691, Paris, France
[3] Inst Pasteur, Cell Biol Parasitism Unit, Paris, France
[4] INSERM U786, Paris, France
[5] Inst Pasteur, Leptospirosis Res Unit, Noumea, New Caledonia
[6] CNRS ERL9195, Paris, France
基金
欧盟地平线“2020”;
关键词
ENTAMOEBA-HISTOLYTICA; METEOROLOGICAL OBSERVATIONS; ACTIN POLYMERIZATION; FLOW; CYTOCHALASIN; ASSIMILATION; VISCOSITY; MOTILITY;
D O I
10.1038/s41598-017-09240-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cell motility is governed by a complex molecular machinery that converts physico-chemical cues into whole-cell movement. Understanding the underlying biophysical mechanisms requires the ability to measure physical quantities inside the cell in a simple, reproducible and preferably non-invasive manner. To this end, we developed BioFlow, a computational mechano-imaging method and associated software able to extract intracellular measurements including pressure, forces and velocity everywhere inside freely moving cells in two and three dimensions with high spatial resolution in a non-invasive manner. This is achieved by extracting the motion of intracellular material observed using fluorescence microscopy, while simultaneously inferring the parameters of a given theoretical model of the cell interior. We illustrate the power of BioFlow in the context of amoeboid cell migration, by modelling the intracellular actin bulk flow of the parasite Entamoeba histolytica using fluid dynamics, and report unique experimental measures that complement and extend both theoretical estimations and invasive experimental measures. Thanks to its flexibility, BioFlow is easily adaptable to other theoretical models of the cell, and alleviates the need for complex or invasive experimental conditions, thus constituting a powerful tool-kit for mechano-biology studies. BioFlow is open-source and freely available via the Icy software.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Twenty years of particle image velocimetry [J].
Adrian, RJ .
EXPERIMENTS IN FLUIDS, 2005, 39 (02) :159-169
[2]  
Allen R.D., 1964, Primitive Motile Systems in Cell Biology
[3]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[4]   A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing [J].
Aoki, Kana ;
Maeda, Fumiyo ;
Nagasako, Tomoya ;
Mochizuki, Yuki ;
Uchida, Seiichi ;
Ikenouchi, Junichi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (13) :E1863-E1871
[5]   EhRho1 regulates plasma membrane blebbing through PI3 kinase in Entamoeba histolytica [J].
Bharadwaj, Ravi ;
Arya, Ranjana ;
Mansuri, M. Shahid ;
Bhattacharya, Sudha ;
Bhattacharya, Alok .
CELLULAR MICROBIOLOGY, 2017, 19 (10)
[6]  
Bray D., 2001, CELL MOVEMENTS MOL M, V15
[7]   Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration [J].
Brugues, Jan ;
Maugis, Benoit ;
Casademunt, Jaume ;
Nassoy, Pierre ;
Amblard, Francois ;
Sens, Pierre .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (35) :15415-15420
[8]   Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers [J].
Brzobohaty, Oto ;
Siler, Martin ;
Trojek, Jan ;
Chvatal, Lukas ;
Karasek, Vitezslav ;
Patak, Ales ;
Pokorna, Zuzana ;
Mika, Filip ;
Zemanek, Pavel .
SCIENTIFIC REPORTS, 2015, 5 :8106
[9]  
Butterworth S., 1930, Wirel. Eng., V7, P536
[10]  
Campàs O, 2014, NAT METHODS, V11, P183, DOI [10.1038/NMETH.2761, 10.1038/nmeth.2761]