MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature

被引:34
作者
Dong, Zhihua [1 ,2 ]
Huang, Shuo [1 ,3 ]
Strom, Valter [4 ]
Chai, Guocai [5 ,6 ]
Varga, Lajos Karoly [7 ]
Eriksson, Olle [3 ,8 ]
Vitos, Levente [1 ,3 ,7 ]
机构
[1] KTH Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
[2] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400030, Peoples R China
[3] Uppsala Univ, Dept Phys & Astron, Div Mat Theory, SE-75121 Uppsala, Sweden
[4] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[5] Linkoping Univ, Dept Management & Engn, Div Engn Mat, SE-58183 Linkoping, Sweden
[6] AB Sandvik Mat Technol R&D Ctr, SE-81181 Sandviken, Sweden
[7] Wigner Res Ctr Phys, Res Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary
[8] Orebro Univ, Sch Sci & Technol, SE-75121 Orebro, Sweden
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2021年 / 79卷
基金
瑞典研究理事会; 匈牙利科学研究基金会;
关键词
High entropy alloys; Magnetocaloric materials; Magnetic phase transition; Experiment and Ab initio; POTENTIAL MODEL; APPROXIMATION;
D O I
10.1016/j.jmst.2020.10.071
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High entropy alloys (HEAs) based on transition metals display rich magnetic characteristics, however attempts on their application in energy efficient technologies remain scarce. Here, we explore the magnetocaloric application for a series of MnxCr0.3Fe0.5Co0.2Ni0.5Al0.3 (0.8 < x < 1.1) HEAs by integrated theoretical and experimental methods. Both theory and experiment indicate the designed HEAs have the Curie temperature close to room temperature and is tunable with Mn concentration. A non-monotonic evolution is observed for both the entropy change and the relative cooling power with changing Mn concentration. The underlying atomic mechanism is found to primarily emerge from the complex impact of Mn on magnetism. Advanced magnetocaloric properties can be achieved by tuning Mn concentration in combination with controlling structural phase stability for the designed HEAs. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:15 / 20
页数:6
相关论文
共 42 条
[1]   Tunable magnetocaloric effect in transition metal alloys [J].
Belyea, Dustin D. ;
Lucas, M. S. ;
Michel, E. ;
Horwath, J. ;
Miller, Casey W. .
SCIENTIFIC REPORTS, 2015, 5
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   Iron and manganese based magnetocaloric materials for near room temperature thermal management [J].
Chaudhary, V. ;
Chen, X. ;
Ramanujan, R. V. .
PROGRESS IN MATERIALS SCIENCE, 2019, 100 :64-98
[4]   Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling [J].
Chaudhary, V. ;
Ramanujan, R. V. .
SCIENTIFIC REPORTS, 2016, 6
[5]   Magnetic and structural properties of high relative cooling power (Fe70Ni30)92Mn8 magnetocaloric nanoparticles [J].
Chaudhary, V. ;
Ramanujan, R. V. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (30)
[6]   Thermal spin fluctuations in CoCrFeMnNi high entropy alloy [J].
Dong, Zhihua ;
Schonecker, Stephan ;
Li, Wei ;
Chen, Dengfu ;
Vitos, Levente .
SCIENTIFIC REPORTS, 2018, 8
[7]   Longitudinal spin fluctuation contribution to thermal lattice expansion of paramagnetic Fe [J].
Dong, Zhihua ;
Li, Wei ;
Chen, Dengfu ;
Schonecker, Stephan ;
Long, Mujun ;
Vitos, Levente .
PHYSICAL REVIEW B, 2017, 95 (05)
[8]   The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models [J].
Franco, V. ;
Blazquez, J. S. ;
Ingale, B. ;
Conde, A. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 42, 2012, 42 :305-342
[9]   High-entropy functional materials [J].
Gao, Michael C. ;
Miracle, Daniel B. ;
Maurice, David ;
Yan, Xuehui ;
Zhang, Yong ;
Hawk, Jeffrey A. .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) :3138-3155
[10]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474