Convolutional LSTM: A Deep Learning Method for Motion Intention Recognition Based on Spatiotemporal EEG Data
被引:5
作者:
Fang, Zhijie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Beijing 100049, Peoples R China
Fang, Zhijie
[1
,2
]
Wang, Weiqun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Beijing 100049, Peoples R China
Wang, Weiqun
[2
]
Hou, Zeng-Guang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R ChinaUniv Chinese Acad Sci, Beijing 100049, Peoples R China
Hou, Zeng-Guang
[1
,2
,3
]
机构:
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
来源:
NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV
|
2019年
/
1142卷
Brain-Computer Interface (BCI) is a powerful technology that allows human beings to communicate with computers or to control devices. Owing to their convenient collection, non-invasive Electroencephalography (EEG) signals play an important role in BCI systems. Design of high-performance motion intention recognition algorithm based on EEG data under cross-subject and multi-category circumstances is a crucial challenge. Towards this purpose, a convolutional recurrent neural network is proposed. The raw EEG streaming is transformed into image sequence according to its location of the primary sensorimotor area to preserve its spatiotemporal features. A Convolutional Long Short-Term Memory (ConvLSTM) network is used to encode spatiotemporal information and generate a better representation from the obtained image sequence. The spatial features are then extracted from the output of ConvLSTM network by convolutional layer. The convolutional layer along with ConvLSTM network is capable of capturing the spatiotemporal features which enables the recognition of motion intention from the raw EEG signals. Experiments are carried out on the PhysioNet EEG motor imagery dataset to test the performance of the proposed method. It is shown that the proposed method can achieve high accuracy of 95.15%, which outperforms previous methods. Meanwhile, the proposed method can be used to design high-performance BCI systems, such as mind-controlled exoskeletons, prosthetic hands and rehabilitation robotics.
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Dai, Mengxi
;
Zheng, Dezhi
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Zheng, Dezhi
;
Na, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Na, Rui
;
Wang, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Wang, Shuai
;
Zhang, Shuailei
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
机构:
Int Burch Univ, Fac Engn & Informat Technol, Sarajevo 71000, Bosnia & HercegInt Burch Univ, Fac Engn & Informat Technol, Sarajevo 71000, Bosnia & Herceg
Kevric, Jasmin
;
Subasi, Abdulhamit
论文数: 0引用数: 0
h-index: 0
机构:
Effat Univ, Coll Engn, Dept Comp Sci, Jeddah 21478, Saudi ArabiaInt Burch Univ, Fac Engn & Informat Technol, Sarajevo 71000, Bosnia & Herceg
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Dai, Mengxi
;
Zheng, Dezhi
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Zheng, Dezhi
;
Na, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Na, Rui
;
Wang, Shuai
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Wang, Shuai
;
Zhang, Shuailei
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100191, Peoples R ChinaBeihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
机构:
Int Burch Univ, Fac Engn & Informat Technol, Sarajevo 71000, Bosnia & HercegInt Burch Univ, Fac Engn & Informat Technol, Sarajevo 71000, Bosnia & Herceg
Kevric, Jasmin
;
Subasi, Abdulhamit
论文数: 0引用数: 0
h-index: 0
机构:
Effat Univ, Coll Engn, Dept Comp Sci, Jeddah 21478, Saudi ArabiaInt Burch Univ, Fac Engn & Informat Technol, Sarajevo 71000, Bosnia & Herceg