Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy

被引:51
|
作者
Sengupta, Atanu
Brar, Navpreet
Davis, E. James
机构
[1] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98195 USA
关键词
bacteria; pollen; nanocolloidal silver; surface-enhanced Raman spectroscopy;
D O I
10.1016/j.jcis.2007.02.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Instrumentation has been developed to detect and characterize airborne pollen and bacteria rapidly by injecting a bioaerosol into a nanocolloidal suspension of silver particles using a micropump. The biological particles were mixed with the silver colloid in order to deposit the metallic particles on the surface of the bioanalyte. The silver/bioanalyte suspension was pumped through a light scattering cuvette, and the enhanced Raman spectrum was recorded. Surface-enhanced Raman spectra are presented for tree pollen (cottonwood and redwood pollen) and a bacterium (Escherichia coli), and the E. coli spectra are compared with results obtained from the literature and with results obtained previously by mixing various concentrations of the bioanalyte with the silver colloid. Although the system has not been optimized to maximize the Raman spectra, it is shown spectra can be obtained rapidly. Some assignments of the chemical bonds associated with the spectra are based on previously published results for bacteria and pollen. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [31] Application of Surface-Enhanced Raman Spectroscopy for Foodborne Pathogens Detection
    Wang Xiao-hui
    Xu Tao-tao
    Huang Yi-qun
    Lai Ke-qiang
    Fan Yu-xia
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (01) : 123 - 129
  • [32] Application advances of surface-enhanced Raman spectroscopy in food detection
    Deng, Sumei
    Liu, Sha
    Kang, Kai
    Li, Guanghua
    Kang, Weijun
    Gao, Zhixian
    Chinese Journal of Analysis Laboratory, 2022, 41 (02) : 232 - 239
  • [33] Detection of Omethoate Residues in Peach with Surface-Enhanced Raman Spectroscopy
    Yaseen, Tehseen
    Sun, Da-Wen
    Pu, Hongbin
    Pan, Ting-Tiao
    FOOD ANALYTICAL METHODS, 2018, 11 (09) : 2518 - 2527
  • [34] Characterization of the ag mediated surface-enhanced Raman spectroscopy of saxitoxin
    Pearman, William F.
    Angel, S. Michael
    Ferry, John L.
    Hall, Sherwood
    APPLIED SPECTROSCOPY, 2008, 62 (07) : 727 - 732
  • [35] Detection of carbamazepine in saliva based on surface-enhanced Raman spectroscopy
    Chen, Ning
    Yuan, Yanbing
    Lu, Ping
    Wang, Luyao
    Zhang, Xuedian
    Chen, Hui
    Ma, Pei
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (12) : 7673 - 7688
  • [36] Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy
    Zhang, XY
    Young, MA
    Lyandres, O
    Van Duyne, RP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (12) : 4484 - 4489
  • [37] Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy
    Ruan, Chuanmin
    Wang, Wei
    Gu, Baohua
    ANALYTICAL CHEMISTRY, 2006, 78 (10) : 3379 - 3384
  • [38] Surface-enhanced Raman spectroscopy for selected energetic material detection
    Mokhtar M.
    Wafy T.
    Abdelhafiz M.
    Mokhtar, Mohamed, 1600, IM Publications Open LLP (33): : 33 - 40
  • [39] Biomarkers detection by surface-enhanced Raman spectroscopy: Analytical strategies
    Liu, Jiewen
    Lai, Huasheng
    Li, Gongke
    MICROCHEMICAL JOURNAL, 2024, 203
  • [40] Bacterial Detection <it>via</it> Surface-Enhanced Raman Spectroscopy (SERS)
    Sengupta, Raghuvir
    D'Apuzzo, Fausto
    Barcelo, Steven
    FASEB JOURNAL, 2020, 34