Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms

被引:123
作者
de Almeida, Catherine Torres [1 ]
Galvao, Lenio Soares [1 ]
de Oliveira Cruz e Aragao, Luiz Eduardo [1 ,2 ]
Henry Balbaud Ometto, Jean Pierre [1 ]
Jacon, Aline Daniele [1 ]
de Souza Pereira, Francisca Rocha [1 ]
Sato, Luciane Yumie [1 ]
Lopes, Aline Pontes [1 ]
Lima de Alencastro Graca, Paulo Mauricio [3 ]
Silva, Camila Valeria de Jesus [4 ]
Ferreira-Ferreira, Jefferson [5 ]
Longo, Marcos [6 ]
机构
[1] Natl Inst Space Res INPE, Caixa Postal 515, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[2] Univ Exeter, Coll Life & Environm Sci, Exeter, Devon, England
[3] Natl Inst Res Amazonia INPA, Caixa Postal 2223, BR-69080971 Manaus, Amazonas, Brazil
[4] Lancaster Univ Bailrigg, Lancaster Environm Ctr, Lancaster LA1 4YW, England
[5] Inst Desenvolvimento Sustentadvel Mamiraua, Caixa Postal 38, BR-69553225 Tefe, AM, Brazil
[6] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
基金
巴西圣保罗研究基金会;
关键词
Hyperspectral remote sensing; Laser scanning; Data integration; Tropical forest; Carbon stock; LEAF-AREA INDEX; FOREST BIOMASS; IMAGING SPECTROSCOPY; TROPICAL FOREST; GROUND BIOMASS; VEGETATION INDEXES; PREDICTIVE MODELS; WATER INDEX; CLASSIFICATION; RESOLUTION;
D O I
10.1016/j.rse.2019.111323
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate estimates of aboveground biomass (AGB) in tropical forests are critical for supporting strategies of ecosystem functioning conservation and climate change mitigation. However, such estimates at regional and local scales are still highly uncertain. Airborne Light Detection And Ranging (LiDAR) and Hyperspectral Imaging (HSI) can characterize the structural and functional diversity of forests with high accuracy at a sub-meter resolution, and potentially improve the AGB estimations. In this study, we compared the ability of different data sources (airborne LiDAR and HSI, and their combination) and regression methods (linear model - LM, linear model with ridge regularization - LMR, Support Vector Regression - SVR, Random Forest - RF, Stochastic Gradient Boosting - SGB, and Cubist - CB) to improve AGB predictions in the Brazilian Amazon. We used georeferenced inventory data from 132 sample plots to obtain a reference field AGB and calculated 333 metrics (45 from LiDAR and 288 from HSI) that could be used as predictors for statistical AGB models. We submitted the metrics to a correlation filtering followed by a feature selection procedure (recursive feature elimination) to optimize the performance of the models and to reduce their complexity. Results showed that both LiDAR and HSI data used alone provided relatively high accurate models if adequate metrics and algorithms are chosen (RMSE = 67.6 Mg.ha(-1) RMSE% = 36%, R-2 = 0.58, for the best LiDAR model; RMSE = 68.1 Mg.ha(-1) RMSE % = 36%, R-2 = 0.58, for the best HSI model). However, HSI-only models required more metrics (5-12) than LiDAR-only models (2-5). Models combining metrics from both datasets resulted in more accurate AGB estimates, regardless of the regression method (RMSE = 57.7 Mg.ha(-1) RMSE% = 31%, R-2 = 0.70, for the best model). The most important LiDAR metrics for estimating AGB were related to the upper canopy cover and tree height percentiles, while the most important HSI metrics were associated with the near infrared and shortwave infrared spectral regions, particularly the leaf/canopy water and lignin-cellulose absorption bands. Finally, an analysis of variance (ANOVA) showed that the remote sensing data source (LiDAR, HSI, or their combination) had a greater effect size than the regression algorithms. Thus, no single algorithm outperformed the others, although the LM method was less suitable when applied to the HSI and hybrid datasets. Results show that the synergistic use of LiDAR and hyperspectral data has great potential for improving the accuracy of the biomass estimates in the Brazilian Amazon.
引用
收藏
页数:16
相关论文
共 99 条
[1]   Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest [J].
Anderson, Jeanne E. ;
Plourde, Lucie C. ;
Martin, Mary E. ;
Braswell, Bobby H. ;
Smith, Marie-Louise ;
Dubayah, Ralph O. ;
Hofton, Michelle A. ;
Blair, J. Bryan .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1856-1870
[2]  
[Anonymous], 1998, P 7 ANN JPL AIRB EAR
[3]  
[Anonymous], 2014, FUSION/LDV: Software for LIDAR Data Analysis and Visualization
[4]   Detecting sugarcane 'orange rust' disease using EO-1 Hyperion hyperspectral imagery [J].
Apan, A ;
Held, A ;
Phinn, S ;
Markley, J .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (02) :489-498
[5]   Quantifying forest canopy traits: Imaging spectroscopy versus field survey [J].
Asner, Gregory P. ;
Martin, Roberta E. ;
Anderson, Christopher B. ;
Knapp, David E. .
REMOTE SENSING OF ENVIRONMENT, 2015, 158 :15-27
[6]   Increasing biomass in Amazonian forest plots [J].
Baker, TR ;
Phillips, OL ;
Malhi, Y ;
Almeida, S ;
Arroyo, L ;
Di Fiore, A ;
Erwin, T ;
Higuchi, N ;
Killeen, TJ ;
Laurance, SG ;
Laurance, WF ;
Lewis, SL ;
Monteagudo, A ;
Neill, DA ;
Vargas, PN ;
Pitman, NCA ;
Silva, JNM ;
Martínez, RV .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 359 (1443) :353-365
[7]   Attenuating the bidirectional texture variation of satellite images of tropical forest canopies [J].
Barbier, Nicolas ;
Couteron, Pierre .
REMOTE SENSING OF ENVIRONMENT, 2015, 171 :245-260
[8]  
Basak D., 2017, NEURAL INFORM PROCES, V11, P203, DOI [DOI 10.1007/978-3-319-70087-8_72, 10.1007/978-3-319-70087-8_72]
[9]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31
[10]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677