Convergence and sharp thresholds for propagation in nonlinear diffusion problems

被引:125
作者
Du, Yihong [1 ,2 ]
Matano, Hiroshi [3 ]
机构
[1] Univ New England, Sch Sci & Technol, Dept Math, Armidale, NSW 2351, Australia
[2] Qufu Normal Univ, Dept Math, Qufu, Shandong, Peoples R China
[3] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
Nonlinear diffusion equation; asymptotic behavior; omega limit set; Cauchy problem; Allen-Cahn; combustion; sharp threshold;
D O I
10.4171/JEMS/198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem u(t) = u(xx) + f(u) (t > 0; x is an element of R-1), u(0, x) = u(0)(x) (x is an element of R-1), where f(u) is a locally Lipschitz continuous function satisfying f(0) = 0. We show that any non-negative bounded solution with compactly supported initial data converges to a stationary solution as t -> infinity. Moreover, the limit is either a constant or a symmetrically decreasing stationary solution. We also consider the special case where f is a bistable nonlinearity and the case where f is a combustion type nonlinearity. Examining the behavior of a parameter-dependent solution u(lambda), we show the existence of a sharp threshold between extinction (i.e., convergence to 0) and propagation (i.e., convergence to 1). The result holds even if f has a jumping discontinuity at u = 1.
引用
收藏
页码:279 / 312
页数:34
相关论文
共 22 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   THE ZERO-SET OF A SOLUTION OF A PARABOLIC EQUATION [J].
ANGENENT, S .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 390 :79-96
[3]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[4]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[5]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[6]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[7]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[8]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[9]  
Brezis H, 2000, ASYMPTOTIC ANAL, V24, P73
[10]   Convergence to equilibrium for semilinear parabolic problems in RN [J].
Busca, J ;
Jendoubi, MA ;
Palácik, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) :1793-1814