Efficient Exemplar Word Spotting

被引:22
作者
Almazan, Jon [1 ]
Gordo, Albert [1 ]
Fornes, Alicia [1 ]
Valveny, Ernest [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Ciencies Computacio, Comp Vis Ctr, E-08193 Barcelona, Spain
来源
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012 | 2012年
关键词
D O I
10.5244/C.26.67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
引用
收藏
页数:11
相关论文
共 22 条
[1]  
Almazan J., EXEMPLAR WORD SPOTTI
[2]  
[Anonymous], IJPRAI
[3]  
[Anonymous], 2011, IEEE TPAMI
[4]  
[Anonymous], IEEE TPAMI
[5]  
[Anonymous], 2008, JMLR
[6]  
[Anonymous], 2007, INT J DOCUMENT ANAL
[7]  
[Anonymous], 2011, ICCV
[8]  
[Anonymous], 2004, WORKSH STAT LEARN CO
[9]  
[Anonymous], ICDAR
[10]  
Bottou L., STOCHASTIC GRADIENT