High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel

被引:377
作者
Leroy, A. [1 ]
Bhatia, B. [1 ]
Kelsall, C. C. [1 ]
Castillejo-Cuberos, A. [2 ,3 ]
Di Capua, M. H. [2 ,3 ,4 ]
Zhao, L. [1 ]
Zhang, L. [1 ]
Guzman, A. M. [2 ,3 ,4 ]
Wang, E. N. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Pontificia Univ Catolica Chile, Escuela Ingn, Ctr Energia, Vicuna Mackenna 4860, Santiago, Chile
[3] Pontificia Univ Catolica Chile, Dept Ingn Mecan & Met, Vicuna Mackenna 4860, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Micro & Nanofluid Lab Life Sci, Vicuna Mackenna 4860, Santiago, Chile
关键词
TRANSPARENT CONVECTION SHIELDS; SOLAR; WATER;
D O I
10.1126/sciadv.aat9480
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent progress in passive radiative cooling technologies has substantially improved cooling performance under direct sunlight. Yet, experimental demonstrations of daytime radiative cooling still severely underperform in comparison with the theoretical potential due to considerable solar absorption and poor thermal insulation at the emitter. In this work, we developed polyethylene aerogel (PEA)-a solar-reflecting (92.2% solar weighted reflectance at 6 mm thick), infrared-transparent (79.9% transmittance between 8 and 13 mu m at 6 mm thick), and low-thermal-conductivity (k(PEA) = 28 mW/mK) material that can be integrated with existing emitters to address these challenges. Using an experimental setup that includes the custom-fabricated PEA, we demonstrate a daytime ambient temperature cooling power of 96 W/m(2) and passive cooling up to 13 degrees C below ambient temperature around solar noon. This work could greatly improve the performance of existing passive radiative coolers for air conditioning and portable refrigeration applications.
引用
收藏
页数:8
相关论文
共 41 条
  • [1] [Anonymous], 2016, C104416 ASTM INT
  • [2] [Anonymous], 2015, HIGH POROSITY POLYET
  • [3] Attia Y.A., 2015, Polyethylene aerogels and method of their production, Patent No. [US 9,034,934 B1, 9034934]
  • [4] A robust convection cover material for selective radiative cooling applications
    Bathgate, S. N.
    Bosi, S. G.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) : 2778 - 2785
  • [5] Thin cadmium sulphide film for radiative cooling application
    Benlattar, M.
    Oualim, E. M.
    Mouhib, T.
    Harmouchi, M.
    Mouhsen, A.
    Belafhal, A.
    [J]. OPTICS COMMUNICATIONS, 2006, 267 (01) : 65 - 68
  • [6] MODTRAN®6: A major upgrade of the MODTRAN® radiative transfer code
    Berk, Alexander
    Conforti, Patrick
    Kennett, Rosemary
    Perkins, Timothy
    Hawes, Frederick
    van den Bosch, Jeannette
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
  • [7] Passive directional sub-ambient daytime radiative cooling
    Bhatia, Bikram
    Leroy, Arny
    Shen, Yichen
    Zhao, Lin
    Gianello, Melissa
    Li, Duanhui
    Gu, Tian
    Hu, Juejun
    Soljacic, Marin
    Wang, Evelyn N.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [8] NF1 heterozygosity fosters de novo tumorigenesis but impairs malignant transformation
    Brosseau, Jean-Philippe
    Liao, Chung-Ping
    Wang, Yong
    Ramani, Vijay
    Vandergriff, Travis
    Lee, Michelle
    Patel, Amisha
    Ariizumi, Kiyoshi
    Le, Lu Q.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [9] Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space
    Chen, Zhen
    Zhu, Linxiao
    Li, Wei
    Fan, Shanhui
    [J]. JOULE, 2019, 3 (01) : 101 - 110
  • [10] Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle
    Chen, Zhen
    Zhu, Linxiao
    Raman, Aaswath
    Fan, Shanhui
    [J]. NATURE COMMUNICATIONS, 2016, 7