Bose-Einstein condensation in large time-averaged optical ring potentials

被引:73
作者
Bell, Thomas A. [1 ,2 ]
Glidden, Jake A. P. [1 ,2 ]
Humbert, Leif [1 ]
Bromley, Michael W. J. [1 ]
Haine, Simon A. [1 ]
Davis, Matthew J. [1 ,3 ]
Neely, Tyler W. [1 ,2 ]
Baker, Mark A. [1 ]
Rubinsztein-Dunlop, Halina [1 ,2 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Math & Phys, ARC Ctr Excellence Engn Quantum Syst EQuS, St Lucia, Qld 4072, Australia
[3] Univ Colorado, JILA, 440 UCB, Boulder, CO 80309 USA
基金
澳大利亚研究理事会;
关键词
Bose-Einstein condensate; atom interferometry; superfluid; matter wave; ring trap; GAS;
D O I
10.1088/1367-2630/18/3/035003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realisation of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 mu m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Quantum many particle systems in ring-shaped optical lattices [J].
Amico, L ;
Osterloh, A ;
Cataliotti, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[2]   Superfluid qubit systems with ring shaped optical lattices [J].
Amico, Luigi ;
Aghamalyan, Davit ;
Auksztol, Filip ;
Crepaz, Herbert ;
Dumke, Rainer ;
Kwek, Leong Chuan .
SCIENTIFIC REPORTS, 2014, 4
[3]   OBSERVATION OF BOSE-EINSTEIN CONDENSATION IN A DILUTE ATOMIC VAPOR [J].
ANDERSON, MH ;
ENSHER, JR ;
MATTHEWS, MR ;
WIEMAN, CE ;
CORNELL, EA .
SCIENCE, 1995, 269 (5221) :198-201
[4]   Large magnetic storage ring for Bose-Einstein condensates [J].
Arnold, AS ;
Garvie, CS ;
Riis, E .
PHYSICAL REVIEW A, 2006, 73 (04)
[5]   BOSE-EINSTEIN CONDENSATION IN AN EXTERNAL POTENTIAL [J].
BAGNATO, V ;
PRITCHARD, DE ;
KLEPPNER, D .
PHYSICAL REVIEW A, 1987, 35 (10) :4354-4358
[6]   All-optical formation of an atomic Bose-Einstein condensate [J].
Barrett, MD ;
Sauer, JA ;
Chapman, MS .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[7]   A versatile high resolution objective for imaging quantum gases [J].
Bennie, L. M. ;
Starkey, P. T. ;
Jasperse, M. ;
Billington, C. J. ;
Anderson, R. P. ;
Turner, L. D. .
OPTICS EXPRESS, 2013, 21 (07) :9011-9016
[8]   EVIDENCE OF BOSE-EINSTEIN CONDENSATION IN AN ATOMIC GAS WITH ATTRACTIVE INTERACTIONS [J].
BRADLEY, CC ;
SACKETT, CA ;
TOLLETT, JJ ;
HULET, RG .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1687-1690
[9]   BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS [J].
DAVIS, KB ;
MEWES, MO ;
ANDREWS, MR ;
VANDRUTEN, NJ ;
DURFEE, DS ;
KURN, DM ;
KETTERLE, W .
PHYSICAL REVIEW LETTERS, 1995, 75 (22) :3969-3973
[10]   XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations [J].
Dennis, Graham R. ;
Hope, Joseph J. ;
Johnsson, Mattias T. .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (01) :201-208