Oxaloacetate treatment preserves motor function in SOD1G93A mice and normalizes select neuroinflammation-related parameters in the spinal cord

被引:6
|
作者
Tungtur, Sudheer K. [1 ,4 ]
Wilkins, Heather M. [2 ]
Rogers, Robert S. [1 ,5 ]
Badawi, Yomna [1 ,6 ]
Sage, Jessica M. [3 ]
Agbas, Abdulbaki [3 ]
Jawdat, Omar [2 ]
Barohn, Richard J. [2 ,7 ]
Swerdlow, Russell H. [2 ]
Nishimune, Hiroshi [1 ,8 ]
机构
[1] Univ Kansas, Sch Med, Dept Anat & Cell Biol, Kansas City, KS 66160 USA
[2] Univ Kansas, Sch Med, Dept Neurol, Kansas City, KS 66160 USA
[3] Kansas City Univ, Dept Basic Sci, Kansas City, MO 64106 USA
[4] Univ Minnesota, Sch Med, Cardiovasc Div, Minneapolis, MN 55455 USA
[5] Kansas City Univ, Dept Curriculum & Integrat Learning, Joplin, MO 64804 USA
[6] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA 15260 USA
[7] Univ Missouri, Dept Neurol, Columbia, MO 65212 USA
[8] Tokyo Metropolitan Inst Gerontol, Neurobiol Aging, Itabashi Ku, 35-2 Sakaecho, Tokyo 1730015, Japan
关键词
AMYOTROPHIC-LATERAL-SCLEROSIS; MITOCHONDRIAL-DNA; MOUSE MODEL; SKELETAL-MUSCLE; DEGENERATION; PGC-1-ALPHA; DYSFUNCTION; MITOPHAGY; SURVIVAL; NEURONS;
D O I
10.1038/s41598-021-90438-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amyotrophic lateral sclerosis (ALS) remains a devastating motor neuron disease with limited treatment options. Oxaloacetate treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. Therefore, we treated the ALS model superoxide dismutase 1 (SOD1) (G93A) mice with oxaloacetate and evaluated their neuromuscular function and lifespan. Treatment with oxaloacetate beginning in the presymptomatic stage significantly improved neuromuscular strength measured during the symptomatic stage in the injected mice compared to the non-treated group. Oxaloacetate treatment starting in the symptomatic stage significantly delayed limb paralysis compared with the non-treated group. For lifespan analysis, oxaloacetate treatment did not show a statistically significant positive effect, but the treatment did not shorten the lifespan. Mechanistically, SOD1(G93A) mice showed increased levels of tumor necrosis factor-alpha (TNF alpha) and peroxisome proliferative activated receptor gamma coactivator 1 alpha (PGC-1 alpha) mRNAs in the spinal cord. However, oxaloacetate treatment reverted these abnormal levels to that of wild-type mice. Similarly, the altered expression level of total NF-kappa B protein returned to that of wild-type mice with oxaloacetate treatment. These results suggest that the beneficial effects of oxaloacetate treatment in SOD1(G93A) mice may reflect the effects on neuroinflammation or bioenergetic stress.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Resveratrol Improves Motoneuron Function and Extends Survival in SOD1G93A ALS Mice
    Renzo Mancuso
    Jaume del Valle
    Laura Modol
    Anna Martinez
    Ana B Granado-Serrano
    Omar Ramirez-Núñez
    Mercé Pallás
    Manel Portero-Otin
    Rosario Osta
    Xavier Navarro
    Neurotherapeutics, 2014, 11 : 419 - 432
  • [22] The Legs at odd angles (Loa) Mutation in Cytoplasmic Dynein Ameliorates Mitochondrial Function in SOD1G93A Mouse Model for Motor Neuron Disease
    El-Kadi, Ali Morsi
    Bros-Facer, Virginie
    Deng, Wenhan
    Philpott, Amelia
    Stoddart, Eleanor
    Banks, Gareth
    Jackson, Graham S.
    Fisher, Elizabeth M. C.
    Duchen, Michael R.
    Greensmith, Linda
    Moore, Anthony L.
    Hafezparast, Majid
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (24) : 18627 - 18639
  • [23] Olfactory Ensheathing Cell Transplantation Into Spinal Cord Prolongs the Survival of Mutant SOD1G93A ALS Rats Through Neuroprotection and Remyelination
    Li, Ying
    Bao, Jianling
    Khatibi, Nikan H.
    Chen, Lin
    Wang, Hongmei
    Duan, Yaokui
    Huang, Hongyun
    Zhou, Changman
    ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, 2011, 294 (05): : 847 - 857
  • [24] Alterations in AQP4 expression and polarization in the course of motor neuron degeneration in SOD1G93A mice
    Dai, Jiaying
    Lin, Weihao
    Zheng, Minying
    Liu, Qiang
    He, Baixuan
    Luo, Chuanming
    Lu, Xilin
    Pei, Zhong
    Su, Huanxing
    Yao, Xiaoli
    MOLECULAR MEDICINE REPORTS, 2017, 16 (02) : 1739 - 1746
  • [25] Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improves muscle function in SOD1G93A mice
    Riddoch-Contreras, Joanna
    Yang, Shi-Yu
    Dick, James R. T.
    Goldspink, Geoffrey
    Orrell, Richard W.
    Greensmith, Linda
    EXPERIMENTAL NEUROLOGY, 2009, 215 (02) : 281 - 289
  • [26] Electroacupuncture alleviates motor dysfunction by regulating neuromuscular junction disruption and neuronal degeneration in SOD1G93A mice
    Liu, Junyang
    Zhao, Weijia
    Guo, Jie
    Kang, Kaiwen
    Li, Hua
    Yang, Xiaohang
    Li, Jie
    Wang, Qiang
    Qiao, Haifa
    BRAIN RESEARCH BULLETIN, 2024, 216
  • [27] GLT1 overexpression in SOD1G93A mouse cervical spinal cord does not preserve diaphragm function or extend disease
    Li, Ke
    Hala, Tamara J.
    Seetharam, Suneil
    Poulsen, David J.
    Wright, Megan C.
    Lepore, Angelo C.
    NEUROBIOLOGY OF DISEASE, 2015, 78 : 12 - 23
  • [28] Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: Neuroprotection by SIRT3 and PGC-1α
    Song, Wenjun
    Song, Yuting
    Kincaid, Brad
    Bossy, Blaise
    Bossy-Wetzel, Ella
    NEUROBIOLOGY OF DISEASE, 2013, 51 : 72 - 81
  • [29] Timeline of hypoglossal motor neuron death and intrinsic tongue muscle denervation in high-copy number SOD1G93A mice
    Fogarty, Matthew J.
    Drieberg-Thompson, Joy R.
    Bellingham, Mark C.
    Noakes, Peter G.
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [30] A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1G93A Rats
    Rehorova, Monika
    Vargova, Ingrid
    Forostyak, Serhiy
    Vackova, Irena
    Turnovcova, Karolina
    Skalnikova, Helena Kupcova
    Vodicka, Petr
    Kubinova, Sarka
    Sykova, Eva
    Jendelova, Pavla
    STEM CELLS TRANSLATIONAL MEDICINE, 2019, 8 (06) : 535 - 547