A BOAS-TYPE THEOREM FOR α-MONOTONE FUNCTIONS

被引:0
作者
Dyachenko, M. [1 ]
Mukanov, A. [2 ,3 ,4 ]
Nursultanov, E. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Vorobevy Gory Moscow 119992, Russia
[2] Gumilyov Eurasian Natl Univ, Munaitpasov 7, Astana 010010, Kazakhstan
[3] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, Bellaterra 08193, Barcelona, Spain
[4] Ctr Recerca Matemat, Edifici C, Bellaterra 08193, Barcelona, Spain
关键词
TRIGONOMETRIC SERIES; FOURIER-TRANSFORM; LORENTZ SPACES; COEFFICIENTS; INEQUALITIES; INTERPOLATION; INTEGRABILITY; LITTLEWOOD; HARDY;
D O I
10.7146/math.scand.a-25503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the class of alpha-monotone functions using fractional integrals. For such functions we prove a Boas-type result on the summability of the Fourier coefficients.
引用
收藏
页码:39 / 58
页数:20
相关论文
共 50 条
  • [31] Quasi-Monotone Weight Functions and their Applications
    Persson, Lars-Erik
    Samko, Natasha
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 502 - +
  • [32] Representations of Monotone Boolean Functions by Linear Programs
    Oliveira, Mateus de Oliveira
    Pudlak, Pavel
    32ND COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2017), 2017, 79
  • [33] Representations of Monotone Boolean Functions by Linear Programs
    Oliveira, Mateus de Oliveira
    Pudlak, Pavel
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2019, 11 (04)
  • [34] Hardy-Littlewood theorem for series with general monotone coefficients
    Bitimkhan, S.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2018, 90 (02): : 43 - 48
  • [35] Three theorems connected with δ-quasi monotone sequences and their application to an integrability theorem
    Leindler, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2002, 60 (3-4): : 373 - 384
  • [36] ADDENDUM TO THE SAMPLING THEOREM: IMPROVED ACCURACY INTERPOLATION FOR SAMPLED FUNCTIONS
    Logofatu, P. C.
    Nascov, V.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 313 - 327
  • [37] The Hardy-Littlewood theorem for multiple fourier series with monotone coefficients
    D'yachenko, M. I.
    Nursultanov, E. D.
    Nursultanov, M. E.
    MATHEMATICAL NOTES, 2016, 99 (3-4) : 503 - 510
  • [38] HARDY INEQUALITIES FOR p-WEAKLY MONOTONE FUNCTIONS
    Saucedo, M.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (02): : 94 - 106
  • [39] Some sharp inequalities for n-monotone functions
    Petar P. Petrov
    Acta Mathematica Hungarica, 2005, 108 : 37 - 46
  • [40] Isometries on L2(X) and monotone functions
    Boza, Santiago
    Soria, Javier
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 160 - 172