A BOAS-TYPE THEOREM FOR α-MONOTONE FUNCTIONS

被引:0
作者
Dyachenko, M. [1 ]
Mukanov, A. [2 ,3 ,4 ]
Nursultanov, E. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Vorobevy Gory Moscow 119992, Russia
[2] Gumilyov Eurasian Natl Univ, Munaitpasov 7, Astana 010010, Kazakhstan
[3] Univ Autonoma Barcelona, Dept Matemat, Edifici C Fac Ciencies, Bellaterra 08193, Barcelona, Spain
[4] Ctr Recerca Matemat, Edifici C, Bellaterra 08193, Barcelona, Spain
关键词
TRIGONOMETRIC SERIES; FOURIER-TRANSFORM; LORENTZ SPACES; COEFFICIENTS; INEQUALITIES; INTERPOLATION; INTEGRABILITY; LITTLEWOOD; HARDY;
D O I
10.7146/math.scand.a-25503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the class of alpha-monotone functions using fractional integrals. For such functions we prove a Boas-type result on the summability of the Fourier coefficients.
引用
收藏
页码:39 / 58
页数:20
相关论文
共 50 条
  • [1] BOAS-TYPE INEQUALITIES VIA SUPERQUADRATIC FUNCTIONS
    Krulic, Kristina
    Pecaric, Josip
    Pokaz, Dora
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (02): : 275 - 286
  • [2] Boas-type theorems for the free metaplectic transform
    Gargati A.E.
    Berkak I.
    Loualid E.M.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1491 - 1507
  • [3] Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform
    Mannai, Mehrez
    Negzaoui, Selma
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (04): : 295 - 309
  • [4] n-EXPONENTIAL CONVEXITY OF HARDY-TYPE AND BOAS-TYPE FUNCTIONALS
    Iqbal, Sajid
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    Pokaz, Dora
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (04): : 739 - 750
  • [5] Piecewise General Monotone Functions and the Hardy-Littlewood Theorem
    Dyachenko, M. I.
    Tikhonov, S. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 319 (01) : 110 - 123
  • [6] Whitney theorem of interpolatory type for k-monotone functions
    Kopotun, KA
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (02) : 307 - 317
  • [7] Whitney theorem of interpolatory type for k-monotone functions
    K. A. Kopotun
    Constructive Approximation, 2001, 17 : 307 - 317
  • [8] A NEW GENERALIZATION OF BOAS THEOREM FOR SOME LORENTZ SPACES Λq(ω)
    Kopezhanova, Aigerim
    Nursultanov, Erlan
    Persson, Lars-Erik
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 619 - 633
  • [10] REARRANGEMENTS OF GENERAL MONOTONE FUNCTIONS AND OF THEIR FOURIER TRANSFORMS
    Booton, Barry
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 871 - 883