RESHAPE: A Liquid Metal-Based Reshapable Aperture for Compound Frequency, Pattern, and Polarization Reconfiguration

被引:19
作者
Bharambe, Vivek T. [1 ]
Ma, Jinwoo [2 ]
Dickey, Michael D. [2 ]
Adams, Jacob J. [1 ]
机构
[1] North Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
关键词
Liquid metal (LM); microstrip antenna; parasitic coupling; reconfigurable antenna; reshapable aperture (RESHAPE); RADIATION-PATTERN; ANTENNA;
D O I
10.1109/TAP.2020.3037803
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a single-feed planar antenna capable of independently reconfiguring its operating frequency, radiation pattern, and polarization using stretchable, encapsulated liquid-metal (LM) parasitic elements. The LM is contained within elastomeric fibers that can be mechanically translated, stretched, or relaxed to alter the position or length of each conducting element on a 2-D surface, physically reshaping the metal on the antenna aperture. This eliminates several practical challenges associated with fluidic actuation of LM and makes the actuation scheme much faster and more reliable than other recent approaches. Using this scheme, the reshapable aperture (RESHAPE) design supports continuously reconfigurable operating frequencies from 2.45 to 6.5 GHz while supporting either linear (y) over cap- or (z) over cap -polarizations. At the same time, the radiation pattern can also be reconfigured in all planes, over a continuous range, to a maximum of +/- 45 degrees away from the broadside direction for most frequencies. For all these possible states, the antenna maintains a 2:1 VSWR and a total efficiency of >60%. We explain the operation of the design at several frequencies, analyze the coverage area, and present measurements of a fabricated prototype.
引用
收藏
页码:2581 / 2594
页数:14
相关论文
共 34 条
[1]  
Bernhard J.T., 2007, SYNTHESIS LECT ANTEN, V4, P1, DOI [DOI 10.1007/978-3-031-01535-9, 10.1007/978-3-031-01535-9]
[2]  
Bharambe V, 2018, IEEE ANTENNAS PROP, P287, DOI 10.1109/APUSNCURSINRSM.2018.8608814
[3]   Planar, Multifunctional 3D Printed Antennas Using Liquid Metal Parasitics [J].
Bharambe, Vivek T. ;
Ma, Jinwoo ;
Dickey, Michael D. ;
Adams, Jacob J. .
IEEE ACCESS, 2019, 7 :134245-134255
[4]   Planar 2-D Beam Steering Antenna Using Liquid Metal Parasitics [J].
Bharambe, Vivek T. ;
Adams, Jacob J. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (11) :7320-7327
[5]   Performance study of pattern reconfirgurable antennas in MIMO communication systems [J].
Boerman, Joshua D. ;
Bernhard, Jennifer T. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (01) :231-236
[6]   Reconfigurable Antennas for Wireless and Space Applications [J].
Christodoulou, Christos G. ;
Tawk, Youssef ;
Lane, Steven A. ;
Erwin, Scott R. .
PROCEEDINGS OF THE IEEE, 2012, 100 (07) :2250-2261
[7]   Microfluidically Reconfigured Wideband Frequency-Tunable Liquid-Metal Monopole Antenna [J].
Dey, Abhishek ;
Guldiken, Rasim ;
Mumcu, Gokhan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (06) :2572-2576
[8]   Fluidics in Microwave Components [J].
Entesari, Kamran ;
Saghati, Alireza Pourghorban .
IEEE MICROWAVE MAGAZINE, 2016, 17 (06) :50-75
[9]   Downlink Multi-User MIMO Transmission for Radiation Pattern Reconfigurable Antenna Systems [J].
Hasan, Mehedi ;
Bahceci, Israfil ;
Cetiner, Bedri A. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (10) :6448-6463
[10]   A Physically Reconfigurable Structurally Embedded Vascular Antenna [J].
Huff, Gregory H. ;
Pan, Hong ;
Hartl, Darren J. ;
Frank, Geoffrey J. ;
Bradford, Robyn L. ;
Baur, Jeffrey W. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (05) :2282-2288