Linear azimuthons in circular fiber arrays and optical angular momentum of discrete optical vortices

被引:31
作者
Alexeyev, C. N. [1 ]
Volyar, A. V. [1 ]
Yavorsky, M. A. [1 ]
机构
[1] Taurida Natl VI Vernadsky Univ, UA-95007 Simferopol, Crimea, Ukraine
关键词
LIGHT-BEAMS; SINGULAR BEAMS; VORTEX; SOLITONS; TRANSFORMATIONS; ROTATION; DESIGN; FLOW;
D O I
10.1103/PhysRevA.80.063821
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the field generated in the outer space by the superposition of modes of a regular circular monomode fiber array. It is shown that a supermode of the fiber array generates a discrete optical vortex; the formula for the topological charge of the vortex is obtained depending on the order of the supermode and the number of fibers in the array. The orbital angular momentum carried by an arbitrary superposition of supermodes is shown to equal the weighted sum of partial angular momenta of supermodes. It is shown that for certain combinations of supermodes the angular momentum comprises along with its intrinsic part also the extrinsic constituent. For such combinations precession of the angular momentum about the propagation axis is demonstrated. It is demonstrated that by combining supermodes one can generate in the array stable regularly rotating linear azimuthons. By creating a phased excitation of certain groups of fibers in the array one can control the global soliton-like motion of the excited domain.
引用
收藏
页数:12
相关论文
共 85 条
[1]   Spatial coherence and information entropy in optical vortex fields [J].
Agarwal, GS ;
Banerji, J .
OPTICS LETTERS, 2002, 27 (10) :800-802
[2]   Asymmetric vortex solitons in nonlinear periodic lattices [J].
Alexander, TJ ;
Sukhorukov, AA ;
Kivshar, YS .
PHYSICAL REVIEW LETTERS, 2004, 93 (06) :063901-1
[3]   Multivortex solitons in triangular photonic lattices [J].
Alexander, Tristram J. ;
Desyatnikov, Anton S. ;
Kivshar, Yuri S. .
OPTICS LETTERS, 2007, 32 (10) :1293-1295
[4]   Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy [J].
Alexeyev, C. N. ;
Alexeyev, A. N. ;
Lapin, B. P. ;
Yavorsky, M. A. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (05)
[5]  
Alexeyev C. N, 2007, Lasers, Optics and Electro-Optics Research Trends, P131
[6]   The orbital angular momentum of light [J].
Allen, L ;
Padgett, MJ ;
Babiker, M .
PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 :291-372
[7]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[8]  
[Anonymous], 1975, Quantum Electronics
[9]  
[Anonymous], 2003, Optical Angular Momentum
[10]   Analysis of photonic crystal fibers:: Scalar solution and polarization correction [J].
Aristizabal, Victor Hugo ;
Velez, Francisco Javier ;
Torres, Pedro .
OPTICS EXPRESS, 2006, 14 (24) :11848-11854