Sea Ice Thickness Estimation From TechDemoSat-1 and Soil Moisture Ocean Salinity Data Using Machine Learning Methods

被引:9
作者
Yan, Qingyun [1 ]
Huang, Weimin [1 ]
机构
[1] Memorial Univ, Fac Engn & Appl Sci, St John, NF, Canada
来源
GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST | 2020年
基金
加拿大自然科学与工程研究理事会;
关键词
Global Navigation Satellite System-Reflectometry (GNSS-R); sea ice thickness; scattering coefficient (sigma(0)); TechDemoSat-1 (TDS-1); Soil Moisture Ocean Salinity (SMOS);
D O I
10.1109/IEEECONF38699.2020.9388974
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper, two machine learning methods, specifically, convolutional neural network (CNN) and support vector regression (SVR), are employed for retrieving sea ice thickness (SIT) from TechDemoSat-1 (TDS-1) and Soil Moisture Ocean Salinity (SMOS) data. The input for both methods consists of scattering coefficient (sigma(0)), the incidence angle (theta), sea ice salinity (S) and sea ice temperature (T). The first two variables are derived from the TDS-1 data, and the latter two are from the SMOS data. Evaluation of the proposed methods is based on measurements in 2017 and 2018 of thin sea ice with thickness less than 1 m. Comparisons showed good consistency between the derived and reference SIT, with correlation coefficients of 0.95 and 0.90 and root mean square differences of 5.49 cm and 7.97 cm for SVR and CNN, respectively. This demonstrates the capability of these machine learning-based methods and the utility of TDS-1 data for SIT retrieval.
引用
收藏
页数:5
相关论文
共 15 条
[1]   Sea Ice Detection Using UK TDS-1 GNSS-R Data [J].
Alonso-Arroyo, Alberto ;
Zavorotny, Valery U. ;
Camps, Adriano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (09) :4989-5001
[2]  
[Anonymous], 1974, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science
[3]  
Cox G.F.N., 1974, J. Glaciol., V13, P109, DOI [10.3189/S0022143000023418, DOI 10.3189/S0022143000023418]
[4]  
Jawaid M, 2019, MICRO NANO TECHNOL, P1
[5]   First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals [J].
Li, Weiqiang ;
Cardellach, Estel ;
Fabra, Fran ;
Rius, Antonio ;
Ribo, Serni ;
Martin-Neira, Manuel .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (16) :8369-8376
[6]   An Arctic sea ice multi-step classification based on GNSS-R data from the TDS-1 mission [J].
Rodriguez-Alvarez, Nereida ;
Holt, Benjamin ;
Jaruwatanadilok, Sermsak ;
Podest, Erika ;
Cavanaugh, Katherine C. .
REMOTE SENSING OF ENVIRONMENT, 2019, 230
[7]   Observing Sea/Ice Transition Using Radar Images Generated From TechDemoSat-1 Delay Doppler Maps [J].
Schiavulli, Domenico ;
Frappart, Frederic ;
Ramillien, Guillaume ;
Darrozes, Jose ;
Nunziata, Ferdinando ;
Migliaccio, Maurizio .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) :734-738
[8]  
Tian-Kunze X., 2016, SMOS daily sea ice thickness version 3
[9]   Potential impacts of enhanced tropical cyclone activity on the El Nino-Southern Oscillation and East Asian monsoon in the mid-Piacenzian warm period [J].
Yan Qing ;
Zhang Zhongshi ;
Zhang Ran .
ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2019, 12 (01) :1-11
[10]   Sea Ice Thickness Measurement Using Spaceborne GNSS-R: First Results With TechDemoSat-1 Data [J].
Yan, Qingyun ;
Huang, Weimin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 :577-587