Effect of lattice strain on the polychromatic emission in ZnO nanostructures for white light emitting diode application

被引:18
作者
Biju, C. S. [1 ]
Suresh, S. [1 ]
Dhas, S. Sahaya Jude [1 ]
Rao, R. Gowri Shankar [2 ]
机构
[1] Saveetha Engn Coll, Dept Phys, Madras 602105, Tamil Nadu, India
[2] Veltech Rangarajan Dr Sagunthala R & D Inst Sci &, Dept Phys, Madras 600062, Tamil Nadu, India
关键词
Selective self-etching method; Nanopetals; Oxygen deficiency; Lattice strain; Polychromatic emission; THIN-FILMS; PHOTOLUMINESCENCE; NANOPARTICLES; DEFECTS; TEMPERATURE;
D O I
10.1016/j.spmi.2018.05.064
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we report that flower shaped architecture of ZnO assembled by individual nano petals of an average thickness similar to 93 nm has been achieved by selective self - etching method. The presence of oxygen deficiency is confirmed by EDX and ATR measurements. ZnO nanopetals prepared at 80 degrees C exhibit enhanced polychromatic defect emissions of blue, green and red (BGR) as compared to samples annealed at higher temperatures. The improved luminescence emission of BGR is attributed to the higher lattice strain and dislocation density induced in ZnO due to native defects. As the annealing temperature is reduced, the dislocation density increases from 7.60 x 10(13) to 3.99 x 10(15) lines/m(2), whilst, lattice strain increases from 0.0079 x 10(-3) to 1.81 x 10(-3). The observed high luminescence emission is due to flower shaped architecture making it suitable for the fabrication of solid-state white light emitting diodes.
引用
收藏
页码:363 / 369
页数:7
相关论文
共 40 条
[1]   Postgrowth annealing of defects in ZnO studied by positron annihilation, x-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements [J].
Chen, ZQ ;
Yamamoto, S ;
Maekawa, M ;
Kawasuso, A ;
Yuan, XL ;
Sekiguchi, T .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (08) :4807-4812
[2]   White light emission from CdTe quantum dots decorated n-ZnO nanorods/p-GaN light-emitting diodes [J].
Dai, J. ;
Ji, Y. ;
Xu, C. X. ;
Sun, X. W. ;
Leck, K. S. ;
Ju, Z. G. .
APPLIED PHYSICS LETTERS, 2011, 99 (06)
[3]   Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength [J].
Djurisic, AB ;
Leung, YH ;
Tam, KH ;
Ding, L ;
Ge, WK ;
Chen, HY ;
Gwo, S .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[4]   Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method [J].
Gao, Shuyan ;
Zhang, Hongjie ;
Deng, Ruiping ;
Wang, Xiaomei ;
Sun, Dehui ;
Zheng, Guoli .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[5]   Microstructural aspects for defect emission and E2high phonon mode of ZnO thin films [J].
Ghosh, Avijit ;
Choudhary, R. N. P. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
[6]   Correlation between microstructure and optical properties of ZnO nanoparticles synthesized by ball milling [J].
Giri, P. K. ;
Bhattacharyya, S. ;
Singh, Dilip K. ;
Kesavamoorthy, R. ;
Panigrahi, B. K. ;
Nair, K. G. M. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (09)
[7]   Photoluminescence properties of SnO2 nanoparticles synthesized by sol-gel method [J].
Gu, F ;
Wang, SF ;
Lü, MK ;
Zhou, GJ ;
Xu, D ;
Yuan, DR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (24) :8119-8123
[8]   Defect states of ZnO nanoparticles: Discrimination by time-resolved photoluminescence spectroscopy [J].
Han, Noh Soo ;
Shim, Hyeong Seop ;
Seo, Joo Hee ;
Kim, Sun Young ;
Park, Seung Min ;
Song, Jae Kyu .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
[9]   Zinc oxide nanoparticles with defects [J].
Ischenko, V ;
Polarz, S ;
Grote, D ;
Stavarache, V ;
Fink, K ;
Driess, M .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (12) :1945-1954
[10]   Trimming of aqueous chemically grown ZnO nanorods into ZnO nanotubes and their comparative optical properties [J].
Israr, M. Q. ;
Sadaf, J. R. ;
Yang, L. L. ;
Nur, O. ;
Willander, M. ;
Palisaitis, J. ;
Persson, P. O. A. .
APPLIED PHYSICS LETTERS, 2009, 95 (07)