Robust model predictive control of constrained linear systems with bounded disturbances

被引:1174
作者
Mayne, DQ [1 ]
Seron, MM
Rakovic, SV
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Newcastle, NSW 2308, Australia
基金
英国工程与自然科学研究理事会;
关键词
robust model predictive control; robustness; bounded disturbances;
D O I
10.1016/j.automatica.2004.08.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper provides a novel solution to the problem of robust model predictive control of constrained, linear, discrete-time systems in the presence of bounded disturbances. The optimal control problem that is solved online includes, uniquely, the initial state of the model employed in the problem as a decision variable. The associated value function is zero in a disturbance invariant set that serves as the 'origin' when bounded disturbances are present, and permits a strong stability result, namely robust exponential stability of the disturbance invariant set for the controlled system with bounded disturbances, to be obtained. The resultant online algorithm is a quadratic program of similar complexity to that required in conventional model predictive control. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 27 条
[1]  
Allgower F., 1999, Advances in Control. Highlights of ECC'99, P391
[2]  
Bemporad A., 1999, ROBUSTNESS IDENTIFIC
[3]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[4]  
De Nicolao G, 2000, PROG SYST C, V26, P3
[5]  
KERRIGAN EC, 2003, CUEDFINFENGTR440 U C
[6]   Theory and computation of disturbance invariant sets for discrete-time linear systems [J].
Kolmanovsky, I ;
Gilbert, EG .
MATHEMATICAL PROBLEMS IN ENGINEERING, 1998, 4 (04) :317-367
[7]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[8]   Efficient robust predictive control [J].
Kouvaritakis, B ;
Rossiter, JA ;
Schuurmans, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1545-1549
[9]   Robust model predictive control using tubes [J].
Langson, W ;
Chryssochoos, I ;
Rakovic, SV ;
Mayne, DQ .
AUTOMATICA, 2004, 40 (01) :125-133
[10]   Worst-case formulations of model predictive control for systems with bounded parameters [J].
Lee, JH ;
Yu, ZH .
AUTOMATICA, 1997, 33 (05) :763-781