Multi Objective Evolutionary Approach for Biometric Fusion

被引:3
作者
Ahmadian, Kushan [1 ]
Gavrilova, Marina [1 ]
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
来源
ICBAKE: 2009 INTERNATIONAL CONFERENCE ON BIOMETRICS AND KANSEI ENGINEERING | 2009年
关键词
D O I
10.1109/ICBAKE.2009.48
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, a noticeable amount of research has been focused on biometric fusion. A new area is looking at utilization of AdaBoost-type learning methods in biometric fusion domain. These methods rely on an idea that by selecting a variety of biometric classifiers the error rate can be reduced. This paper presents a new evolutionary algorithm based on the multi-objective genetic approach, which automatically preserves diversity in face detection system. The proposed algorithm creates classifiers based on the amount of error computed for each class, and then uses multi-objective genetic algorithm to combine them to produce a set of powerful ensembles. The application is developed for face detection biometric system.
引用
收藏
页码:12 / 17
页数:6
相关论文
共 25 条
[1]   Evolving ensemble of classifiers in low-dimensional spaces using multi-objective evolutionary approach [J].
Ahmadian, Kushan ;
Golestani, Abbas ;
Analoui, Morteza ;
Jahed, Mohammad R. .
6TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, PROCEEDINGS, 2007, :217-222
[2]   Multiobjective parsimony enforcement for superior generalisation performance [J].
Bernstein, Y ;
Li, XD ;
Ciesielski, V ;
Song, A .
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, :83-89
[3]  
Breiman L, 1996, MACH LEARN, V24, P49
[4]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[5]  
CHAN P, P 12 INT C MACH LEAR, P90
[6]   Multiobjective optimization of trusses using genetic algorithms [J].
Coello, CA ;
Christiansen, AD .
COMPUTERS & STRUCTURES, 2000, 75 (06) :647-660
[7]  
Deb K., 2000, P PAR PROBL SOLV NAT, VVI, P849, DOI DOI 10.1007/3-540-45356-3_
[8]  
FAN D, P AAAI 96 WORKSH INT, P40
[9]  
Freund Y., 1996, INT C MACH LEARN ICM
[10]  
Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601