Self-adaptation in evolutionary algorithms

被引:0
作者
Meyer-Nieberg, Silja [1 ]
Beyer, Hans-Georg [2 ]
机构
[1] Univ Bundeswehr Munchen, Dept Comp Sci, D-85577 Neubiberg, Germany
[2] Vorarlberg Univ Appl Sci, Res Ctr Proc & Prod Engn, Dept Comp Sci, A-6850 Dornbirn, Austria
来源
PARAMETER SETTING IN EVOLUTIONARY ALGORITHMS | 2007年 / 54卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this chapter, we will give an overview over self-adaptive methods in evolutionary algorithms. Self-adaptation in its purest meaning is a state-of-the-art method to adjust the setting of control parameters. It is called self-adaptive because the algorithm controls the setting of these parameters itself - embedding them into an individual's genome and evolving them. We will start with a short history of adaptation methods. The section is followed by a presentation of classification schemes for adaptation rules. Afterwards, we will review empirical and theoretical research of self-adaptation methods applied in genetic algorithms, evolutionary programming, and evolution strategies.
引用
收藏
页码:47 / +
页数:6
相关论文
共 72 条
[1]  
Altenberg L., 1994, Advances in Genetic Programming, P47
[2]  
Angeline PJ., 1995, COMPUTATIONAL INTELL, P152
[3]  
[Anonymous], THESIS U MICHIGAN
[4]  
Arnold DV, 2002, IEEE T EVOLUT COMPUT, V6, P30, DOI [10.1109/4235.985690, 10.1023/A:1015059928466]
[5]   Convergence results for the (1,λ)-SA-ES using the theory of φ-irreducible Markov chains [J].
Auger, A .
THEORETICAL COMPUTER SCIENCE, 2005, 334 (1-3) :35-69
[6]  
BAECK T, 1996, ISMIS, P158
[7]  
BAECK T, 1992, P PARALLEL PROBLEM S, V2, P85
[8]  
BAECK T, 1993, P 5 INT C GEN ALG
[9]  
BAECK T, 1992, P 1 EUR C ART LIF, P263
[10]  
Baeck T., 1997, HDB EVOLUTIONARY COM