Martingale Solutions of the Stochastic 2D Primitive Equations with Anisotropic Viscosity*

被引:2
作者
Sun, Chengfeng [1 ]
Gao, Hongjun [2 ]
Liu, Hui [3 ]
Zhang, Jie [1 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
Stochastic primitive equations; anisotropic viscosity; Martingale solutions; LARGE-SCALE OCEAN; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; Z-WEAK SOLUTIONS; EXISTENCE; ATMOSPHERE; REGULARITY; UNIQUENESS; BLOWUP;
D O I
10.1051/ps/2022006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The stochastic 2D primitive equations with anisotropic viscosity are studied in this paper. The existence of the martingale solutions and pathwise uniqueness of the solutions are obtained. The proof is based on anisotropic estimates, the compactness method, tightness criteria and the Jakubowski version of the Skorokhod theorem for nonmetric spaces.
引用
收藏
页码:243 / 264
页数:22
相关论文
共 52 条