Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer

被引:124
作者
Chen, J. Y. [1 ]
Sun, K. W. [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Appl Chem, Hsinchu 30050, Taiwan
关键词
Nanoimprint; Anti-reflection; Sub-wavelength structure; GRATINGS;
D O I
10.1016/j.solmat.2009.11.028
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this report, the results of the fabrication of nanostructured Si molds by e-beam lithography and chemical wet etching are presented. A home-made pneumatic nanoimprint system was used to transfer the mold patterns to a PMMA layer on a Si template using the spin-coating replication/hot-embossing techniques. The patterned PMMA layer was peeled off from the Si template and directly transferred onto the surface of a poly-Si P-N junction solar cell device to serve as the anti-reflection (AR) layer. It provides a simple and low-cost means for large-scale Use in the production of AR layers for improving solar cell performance. A drastic reduction in reflectivity of the AR layer over a broad spectral range was demonstrated. In addition, the great improvement on the light harvest efficiency of the solar cells from 10.4% to 13.5% using the nanostructured PMMA layer as the AR layer was validated. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:629 / 633
页数:5
相关论文
共 16 条
[1]  
BOERNER V, 2003, SID S, V34, P68
[2]   IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS [J].
CHOU, SY ;
KRAUSS, PR ;
RENSTROM, PJ .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3114-3116
[3]   Application of spectral reflectance to the monitoring of ZnO nanorod growth [J].
Ghong, T. H. ;
Kim, Y. D. ;
Ahn, E. ;
Yoon, E. ;
An, S. J. ;
Yi, G-C. .
APPLIED SURFACE SCIENCE, 2008, 255 (03) :746-748
[4]   Reflection properties of nanostructure-arrayed silicon surfaces [J].
Hadobás, K ;
Kirsch, S ;
Carl, A ;
Acet, M ;
Wassermann, EF .
NANOTECHNOLOGY, 2000, 11 (03) :161-164
[5]   Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching [J].
Ishimori, M ;
Kanamori, Y ;
Sasaki, M ;
Hane, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2002, 41 (6B) :4346-4349
[6]   Broadband antireflection gratings fabricated upon silicon substrates [J].
Kanamori, Y ;
Sasaki, M ;
Hane, K .
OPTICS LETTERS, 1999, 24 (20) :1422-1424
[7]   Antireflection sub-wavelength gratings fabricated by spin-coating replication [J].
Kanamori, Y ;
Roy, E ;
Chen, Y .
MICROELECTRONIC ENGINEERING, 2005, 78-79 :287-293
[8]   Realization of a near-perfect antireflection coating for silicon solar energy utilization [J].
Kuo, Mei-Ling ;
Poxson, David J. ;
Kim, Yong Sung ;
Mont, Frank W. ;
Kim, Long Kyu ;
Schuhert, E. Fred ;
Lin, Shawn-Yu .
OPTICS LETTERS, 2008, 33 (21) :2527-2529
[9]   ZnO nanostructures as efficient antireflection layers in solar cells [J].
Lee, Yun-Ju ;
Ruby, Douglas S. ;
Peters, David W. ;
McKenzie, Bonnie B. ;
Hsu, Julia W. P. .
NANO LETTERS, 2008, 8 (05) :1501-1505
[10]  
LIN GR, 2007, APPL PHYS LETT, V90, P81925