Optimal, reliable estimation of quantum states

被引:265
作者
Blume-Kohout, Robin [1 ]
机构
[1] Caltech 107 81, Inst Quantum Informat, Pasadena, CA 91125 USA
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
关键词
Quantum optics - Eigenvalues and eigenfunctions;
D O I
10.1088/1367-2630/12/4/043034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurately inferring the state of a quantum device from the results of measurements is a crucial task in building quantum information processing hardware. The predominant state estimation procedure, maximum likelihood estimation (MLE), generally reports an estimate with zero eigenvalues. These cannot be justified. Furthermore, the MLE estimate is incompatible with error bars, so conclusions drawn from it are suspect. I propose an alternative procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues, its eigenvalues provide a bound on their own uncertainties, and under certain circumstances it is provably the most accurate procedure possible. I show how to implement BME numerically, and how to obtain natural error bars that are compatible with the estimate. Finally, I briefly discuss the differences between Bayesian and frequentist estimation techniques.
引用
收藏
页数:25
相关论文
共 29 条
  • [1] The learnability of quantum states
    Aaronson, Scott
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3089 - 3114
  • [2] Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
  • [3] Photonic state tomography
    Altepeter, JB
    Jeffrey, ER
    Kwiat, PG
    [J]. ADVANCES IN ATOMIC MOLECULAR AND OPTICAL PHYSICS, VOL 52, 2005, 52 : 105 - 159
  • [4] Ancilla-assisted quantum process tomography
    Altepeter, JB
    Branning, D
    Jeffrey, E
    Wei, TC
    Kwiat, PG
    Thew, RT
    O'Brien, JL
    Nielsen, MA
    White, AG
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (19) : 4
  • [5] BLUMEKOHOUT R, 2006, ARXIVQUANTPH0603116V
  • [6] UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM
    CHIB, S
    GREENBERG, E
    [J]. AMERICAN STATISTICIAN, 1995, 49 (04) : 327 - 335
  • [7] JEFFREYS PRIOR IS ASYMPTOTICALLY LEAST FAVORABLE UNDER ENTROPY RISK
    CLARKE, BS
    BARRON, AR
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 41 (01) : 37 - 60
  • [8] DERKA R, 1996, J FINE MECH OPT, V11, P341
  • [9] DiVincenzo DP, 2000, FORTSCHR PHYS, V48, P771, DOI 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO
  • [10] 2-E