Controlled mineralisation and recrystallisation of brushite within alginate hydrogels

被引:13
作者
Bjornoy, Sindre H. [1 ]
Bassett, David C. [1 ]
Ucar, Seniz [2 ]
Andreassen, Jens-Petter [2 ]
Sikorski, Pawel [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Chem Engn, N-7491 Trondheim, Norway
关键词
alginate; biomineralisation; hybrid materials; hydrogels; brushite; CALCIUM-PHOSPHATE; SCAFFOLD DESIGN; IN-VITRO; NUCLEATION; HYDROXYAPATITE; CRYSTALLIZATION; TEMPERATURE; OSTEOCONDUCTION; OSTEOINDUCTION; MICROSPHERES;
D O I
10.1088/1748-6041/11/1/015013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Due to high solubility and fast resorption behaviour under physiological conditions, brushite (CaHPO4 center dot 2H(2)O, calcium monohydrogen phosphate dihydrate, dicalcium phosphate dihydrate) has great potential in bone regeneration applications, both in combination with scaffolds or as a component of calcium phosphate cements. The use of brushite in combination with hydrogels opens up possibilities for new cell-based tissue engineering applications of this promising material. However, published preparation methods of brushite composites, in which the mineral phase is precipitated within the hydrogel network, fail to offer the necessary degree of control over the mineral phase, content and distribution within the hydrogel matrix. The main focus of this study is to address these shortcomings by determining the precise fabrication parameters needed to prepare composites with controlled composition and properties. Composite alginate microbeads were prepared using a counter-diffusion technique, which allows for the simultaneous crosslinking of the hydrogel and precipitation of an inorganic mineral phase. Reliable nucleation of a desired mineral phase within the alginate network proved more challenging than simple aqueous precipitation. This was largely due to ion transport within the hydrogel producing concentration gradients that modified levels of supersaturation and favoured the nucleation of other phases such as hydroxyapatite and octacalcium phosphate, which would otherwise not form. To overcome this, the incorporation of brushite seed crystals resulted in good control during the mineral phase, and by adjusting the number of seeds and amount of precursor concentration, the amount of mineral could be tuned. The material was characterised with a range of physical techniques, including scanning electron microscopy, powder x-ray diffraction and Rietveld refinement, Fourier transform infrared spectroscopy, and thermogravimetric analysis, in order to assess the mineral morphology, phase and amount within the organic matrix. The mineral content of the composite material converted from brushite into hydroxyapatite when submerged in simulated body fluid, indicating possible bioactivity. Additionally, initial cell culture studies revealed that both the material and the synthesis procedure are compatible with cells relevant to bone tissue engineering.
引用
收藏
页数:13
相关论文
共 55 条
[1]   CRYSTAL HABIT AND GROWTH-CONDITIONS OF BRUSHITE, CAHPO42H2O [J].
ABBONA, F ;
CHRISTENSSON, F ;
ANGELA, MF ;
MADSEN, HEL .
JOURNAL OF CRYSTAL GROWTH, 1993, 131 (3-4) :331-346
[2]   THE INITIAL PHASES OF CALCIUM AND MAGNESIUM PHOSPHATES PRECIPITATED FROM SOLUTIONS OF HIGH TO MEDIUM CONCENTRATIONS [J].
ABBONA, F ;
MADSEN, HEL ;
BOISTELLE, R .
JOURNAL OF CRYSTAL GROWTH, 1986, 74 (03) :581-590
[3]   Osteoinduction, osteoconduction and osseointegration [J].
Albrektsson, T ;
Johansson, C .
EUROPEAN SPINE JOURNAL, 2001, 10 (Suppl 2) :S96-S101
[4]   Smart designing of new hybrid materials based on brushite-alginate and monetite-alginate microspheres: Bio-inspired for sequential nucleation and growth [J].
Amer, Walid ;
Abdelouandi, Karima ;
Ramananarivo, Hugo Ronald ;
Fihri, Aziz ;
El Achaby, Mounir ;
Zahouily, Mohamed ;
Barakat, Abdellatif ;
Djessas, Kamal ;
Clark, James ;
Solhy, Abderrahim .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 35 :341-346
[5]  
Amini Ami R., 2012, Critical Reviews in Biomedical Engineering, V40, P363
[6]   In vivo behavior of three different injectable hydraulic calcium phosphate cements [J].
Apelt, D ;
Theiss, F ;
El-Warrak, AO ;
Zlinszky, K ;
Bettschart-Wolfisberger, R ;
Bohner, M ;
Matter, S ;
Auer, JA ;
von Rechenberg, B .
BIOMATERIALS, 2004, 25 (7-8) :1439-1451
[7]   Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-getatine-hydroxyapatite scaffolds with anisotropic pore structure [J].
Bernhardt, A. ;
Despang, F. ;
Lode, A. ;
Demmler, A. ;
Hanke, T. ;
Gelinsky, M. .
Journal of Tissue Engineering and Regenerative Medicine, 2009, 3 (01) :54-62
[8]   Can bioactivity be tested in vitro with SBF solution? [J].
Bohner, Marc ;
Lemaitre, Jacques .
BIOMATERIALS, 2009, 30 (12) :2175-2179
[9]   GROWTH UNITS AND NUCLEATION - THE CASE OF CALCIUM PHOSPHATES [J].
BOISTELLE, R ;
LOPEZVALERO, I .
JOURNAL OF CRYSTAL GROWTH, 1990, 102 (03) :609-617
[10]   VIBRATIONAL-SPECTRA OF BRUSHITE, CAHPO4.2H2O [J].
CASCIANI, F ;
CONDRATE, RA .
SPECTROSCOPY LETTERS, 1979, 12 (10) :699-713