Evaluation of the convolution sums Σa1m1+a2m2+a3m3+a4m4=n σ(m1)σ(m2)σ(m3)σ(m4) with 1cm(a1, a2, a3, a4) ≤ 4

被引:1
作者
Lee, Joohee [1 ]
Park, Yoon Kyung [2 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Ewha Womans Univ, Inst Math Sci, 52 Seodaemun Gu, Seoul 03762, South Korea
基金
新加坡国家研究基金会;
关键词
Convolution sum; sums of divisor functions; quasimodular form; the number of representation by quadratic forms; SIGMA(L)SIGMA(M);
D O I
10.1142/S1793042117501160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generating functions of divisor functions are quasimodular forms of weight 2 and the product of them is a quasimodular form of higher weight. In this work, we evaluate the convolution sums Sigma(a1m1+a2m2+a3m3+a4m4=n) sigma(m(1))sigma(m(2))sigma(m(3))sigma(m(4)) for the positive integers a(1), a(2), a(3), a(4), and n with lcm (a(1), a(2), a(3), a(4)) <= 4. We reprove the known formulas for the number of representations of a positive integer n by each of the quadratic forms Sigma(16)(j=0) x(j)(2) and Sigma(8)(j=1) (x(2j-1)(2) + x(2j-1)x(2j) + x(2j)(2) as an application of the new identities proved in this paper.
引用
收藏
页码:2155 / 2173
页数:19
相关论文
共 29 条
[21]   Evaluation of the convolution sums Σak plus bl plus cm=n σ(k)σ(l)σ(m) with 1cm(a, b, c) ≤ 6 [J].
Park, Yoon Kyung .
JOURNAL OF NUMBER THEORY, 2016, 168 :257-275
[22]   EVALUATION OF THE CONVOLUTION SUMS Σl+15m=n σ(l)σ(m) AND Σ3l+5m=n σ(l)σ(m) AND AN APPLICATION [J].
Ramakrishnan, B. ;
Sahu, Brundaban .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (03) :799-809
[23]  
Ramanujan S., 1916, Trans. Camb. Phil. Soc., V22, P159
[24]   Evaluating convolution sums of the divisor function by quasimodular forms [J].
Royer, Emmanuel .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (02) :231-261
[25]  
STEIN W., 2007, Graduate Studies in Mathematics, V79
[26]  
Williams K. S., INT J NUMBER THEORY
[27]   The convolution sum Σm&lt;n/8 σ(m)σ(n-8m) [J].
Williams, Kenneth S. .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 228 (02) :387-396
[28]   Evaluation of the convolution sum Σi+25j=n σ(i)σ(j) [J].
Xia, Ernest X. W. ;
Tian, X. L. ;
Yao, Olivia X. M. .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (06) :1421-1430
[29]   Evaluation of the convolution sums Σl+36m=n σ(l)σ(m) and Σ4l+9m=n σ(l)σ(m) [J].
Ye, Dongxi .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) :171-183