The data-driven future of high-energy-density physics

被引:93
作者
Hatfield, Peter W. [1 ]
Gaffney, Jim A. [2 ]
Anderson, Gemma J. [2 ]
Ali, Suzanne [2 ]
Antonelli, Luca [3 ]
du Pree, Suzan Basegmez [4 ]
Citrin, Jonathan [5 ]
Fajardo, Marta [6 ]
Knapp, Patrick [7 ]
Kettle, Brendan [8 ]
Kustowski, Bogdan [2 ]
MacDonald, Michael J. [2 ]
Mariscal, Derek [2 ]
Martin, Madison E. [2 ]
Nagayama, Taisuke [7 ]
Palmer, Charlotte A. J. [9 ]
Peterson, J. Luc [2 ]
Rose, Steven [1 ,8 ]
Ruby, J. J. [10 ]
Shneider, Carl [11 ]
Streeter, Matt J., V [8 ]
Trickey, Will [3 ]
Williams, Ben [12 ]
机构
[1] Univ Oxford, Clarendon Lab, Pk Rd, Oxford, England
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Univ York, York Plasma Inst, Dept Phys, York, N Yorkshire, England
[4] Natl Inst Subat Phys, Nikhef, Amsterdam, Netherlands
[5] DIFFER Dutch Inst Fundamental Energy Res, Eindhoven, Netherlands
[6] Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[7] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[8] Imperial Coll London, London, England
[9] Queens Univ Belfast, Sch Math & Phys, Belfast, Antrim, North Ireland
[10] Univ Rochester, Lab Laser Energet, Rochester, NY USA
[11] Dutch Natl Ctr Math & Comp Sci CWI, Amsterdam, Netherlands
[12] AWE Plc, Reading, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
INERTIAL CONFINEMENT FUSION; BAYESIAN-INFERENCE; SPACE WEATHER; LASER; COMPRESSION; FACILITY; SIMULATIONS; PERFORMANCE; INTERIORS; PETAWATT;
D O I
10.1038/s41586-021-03382-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics-however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally. Here we argue that machine learning models and data-driven methods are in the process of reshaping our exploration of these extreme systems that have hitherto proved far too nonlinear for human researchers. From a fundamental perspective, our understanding can be improved by the way in which machine learning models can rapidly discover complex interactions in large datasets. From a practical point of view, the newest generation of extreme physics facilities can perform experiments multiple times a second (as opposed to approximately daily), thus moving away from human-based control towards automatic control based on real-time interpretation of diagnostic data and updates of the physics model. To make the most of these emerging opportunities, we suggest proposals for the community in terms of research design, training, best practice and support for synthetic diagnostics and data analysis.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 125 条
[1]   Machine Learning in High Energy Physics Community White Paper [J].
Albertsson, Kim ;
Altoe, Piero ;
Anderson, Dustin ;
Andrews, Michael ;
Espinosa, Juan Pedro Araque ;
Aurisano, Adam ;
Basara, Laurent ;
Bevan, Adrian ;
Bhimji, Wahid ;
Bonacorsi, Daniele ;
Calafiura, Paolo ;
Campanelli, Mario ;
Capps, Louis ;
Carminati, Federico ;
Carrazza, Stefano ;
Childers, Taylor ;
Coniavitis, Elias ;
Cranmer, Kyle ;
David, Claire ;
Davis, Douglas ;
Duarte, Javier ;
Erdmann, Martin ;
Eschle, Jonas ;
Farbin, Amir ;
Feickert, Matthew ;
Castro, Nuno Filipe ;
Fitzpatrick, Conor ;
Floris, Michele ;
Forti, Alessandra ;
Garra-Tico, Jordi ;
Gemmler, Jochen ;
Girone, Maria ;
Glaysher, Paul ;
Gleyzer, Sergei ;
Gligorov, Vladimir ;
Golling, Tobias ;
Graw, Jonas ;
Gray, Lindsey ;
Greenwood, Dick ;
Hacker, Thomas ;
Harvey, John ;
Hegner, Benedikt ;
Heinrich, Lukas ;
Hooberman, Ben ;
Junggeburth, Johannes ;
Kagan, Michael ;
Kane, Meghan ;
Kanishchev, Konstantin ;
Karpinski, Przemyslaw ;
Kassabov, Zahari .
18TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2017), 2018, 1085
[2]   A hybrid deep learning architecture for classification of microscopic damage on National Ignition Facility laser optics [J].
Amorin, Connor ;
Kegelmeyer, Laura M. ;
Kegelmeyer, W. Philip .
STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (06) :505-513
[3]   Improved surrogates in inertial confinement fusion with manifold and cycle consistencies [J].
Anirudh, Rushil ;
Thiagarajan, Jayaraman J. ;
Bremer, Peer-Timo ;
Spears, Brian K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (18) :9741-9746
[4]  
[Anonymous], 2018, Machine Learning Techniques for Space Weather, DOI DOI 10.1016/B978-0-12-811788-0.00012-3
[5]  
[Anonymous], Facts and Figures
[6]  
[Anonymous], 2019, LULI2000 USER GUIDE
[7]  
[Anonymous], 2013, DISCOVERING SIGNIFIC
[8]  
Atzeni S., 2004, PHYS INERTIAL FUSION
[9]   Laser-driven ion acceleration: methods, challenges and prospects [J].
Badziak, J. .
INTERNATIONAL CONFERENCES ON RESEARCH AND APPLICATIONS OF PLASMAS (PLASMA-2017), 2018, 959
[10]   A higher-than-predicted measurement of iron opacity at solar interior temperatures [J].
Bailey, J. E. ;
Nagayama, T. ;
Loisel, G. P. ;
Rochau, G. A. ;
Blancard, C. ;
Colgan, J. ;
Cosse, Ph. ;
Faussurier, G. ;
Fontes, C. J. ;
Gilleron, F. ;
Golovkin, I. ;
Hansen, S. B. ;
Iglesias, C. A. ;
Kilcrease, D. P. ;
MacFarlane, J. J. ;
Mancini, R. C. ;
Nahar, S. N. ;
Orban, C. ;
Pain, J-C. ;
Pradhan, A. K. ;
Sherrill, M. ;
Wilson, B. G. .
NATURE, 2015, 517 (7532) :56-U120