Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on 18F FDG-PET/CT

被引:81
作者
Koyasu, Sho [1 ,2 ]
Nishio, Mizuho [1 ,3 ]
Isoda, Hiroyoshi [1 ,3 ]
Nakamoto, Yuji [1 ]
Togashi, Kaori [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Diagnost Imaging & Nucl Med, Sakyo Ku, 54 Kawahara Cho, Kyoto, Kyoto 6068507, Japan
[2] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan
[3] Kyoto Univ Hosp, Preempt Med & Lifestyle Related Dis Res Ctr, Sakyo Ku, 53 Kawahara Cho, Kyoto, Kyoto 6068507, Japan
关键词
Lung cancer; Squamous cell carcinoma; Adenocarcinoma; EGFR mutation; Radiomics; Gradient tree boosting; IMAGE-RECONSTRUCTION SETTINGS; PROGNOSTIC VALUE; CLASSIFICATION; ERLOTINIB; FEATURES; IMPACT;
D O I
10.1007/s12149-019-01414-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective To develop and evaluate a radiomics approach for classifying histological subtypes and epidermal growth factor receptor (EGFR) mutation status in lung cancer on PET/CT images. Methods PET/CT images of lung cancer patients were obtained from public databases and used to establish two datasets, respectively to classify histological subtypes (156 adenocarcinomas and 32 squamous cell carcinomas) and EGFR mutation status (38 mutant and 100 wild-type samples). Seven types of imaging features were obtained from PET/CT images of lung cancer. Two types of machine learning algorithms were used to predict histological subtypes and EGFR mutation status: random forest (RF) and gradient tree boosting (XGB). The classifiers used either a single type or multiple types of imaging features. In the latter case, the optimal combination of the seven types of imaging features was selected by Bayesian optimization. Receiver operating characteristic analysis, area under the curve (AUC), and tenfold cross validation were used to assess the performance of the approach. Results In the classification of histological subtypes, the AUC values of the various classifiers were as follows: RF, single type: 0.759; XGB, single type: 0.760; RF, multiple types: 0.720; XGB, multiple types: 0.843. In the classification of EGFR mutation status, the AUC values were: RF, single type: 0.625; XGB, single type: 0.617; RF, multiple types: 0.577; XGB, multiple types: 0.659. Conclusions The radiomics approach to PET/CT images, together with XGB and Bayesian optimization, is useful for classifying histological subtypes and EGFR mutation status in lung cancer.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 23 条
[1]  
[Anonymous], 2015, OPEN J MED IMAGING, DOI DOI 10.4236/OJMI.2015.53022
[2]  
BERGSTRA J, P 25 ANN C NEUR INF, P2546
[3]   Rapid Contour-based Segmentation for 18F-FDG PET Imaging of Lung Tumors by Using ITK-SNAP: Comparison to Expert-based Segmentation [J].
Besson, Florent L. ;
Henry, Theophraste ;
Meyer, Celine ;
Chevance, Virgile ;
Roblot, Victoire ;
Blanchet, Elise ;
Arnould, Victor ;
Grimon, Gilles ;
Chekroun, Malika ;
Mabille, Laurence ;
Parent, Florence ;
Seferian, Andrei ;
Bulifon, Sophie ;
Montani, David ;
Humbert, Marc ;
Chaumet-Riffaud, Philippe ;
Lebon, Vincent ;
Durand, Emmanuel .
RADIOLOGY, 2018, 288 (01) :277-284
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review [J].
Chalkidou, Anastasia ;
O'Doherty, Michael J. ;
Marsden, Paul K. .
PLOS ONE, 2015, 10 (05)
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[8]   Non-Small Cell Lung Cancer Treated with Erlotinib: Heterogeneity of 18F-FDG Uptake at PET-Association with Treatment Response and Prognosis [J].
Cook, Gary J. R. ;
O'Brien, Mary E. ;
Siddique, Muhammad ;
Chicklore, Sugama ;
Loi, Hoi Y. ;
Sharma, Bhupinder ;
Punwani, Ravi ;
Bassett, Paul ;
Goh, Vicky ;
Chua, Sue .
RADIOLOGY, 2015, 276 (03) :883-893
[9]   Survival Prognostic Value of Morphological and Metabolic variables in Patients with Stage I and II Non-Small Cell Lung Cancer [J].
Domachevsky, L. ;
Groshar, D. ;
Galili, R. ;
Saute, M. ;
Bernstine, H. .
EUROPEAN RADIOLOGY, 2015, 25 (11) :3361-3367
[10]   A comprehensive data level analysis for cancer diagnosis on imbalanced data [J].
Fotouhi, Sara ;
Asadi, Shahrokh ;
Kattan, Michael W. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 90