Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations - Homotopy perturbation approach

被引:52
作者
Meena, A. [1 ]
Rajendran, L. [1 ]
机构
[1] Madura Coll, Dept Math, Madurai 625011, Tamil Nadu, India
关键词
Amperometric biosensor; Potentiometric biosensor; Non-linear reaction-diffusion; Non-steady-state; Homotopy perturbation method; ELECTROACTIVE POLYMER-FILMS; MICHAELIS-MENTEN KINETICS; ASYMPTOTIC METHODS; ENZYME ELECTRODES; SIMULATION; BEHAVIOR; REACTION/DIFFUSION;
D O I
10.1016/j.jelechem.2010.03.027
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A mathematical model of amperometric and potentiometric biosensor is developed. The model is based on system of reaction-diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reaction. This paper presents an approximate analytical method (He's Homotopy perturbation method) to solve the non-linear differential equations that describe the diffusion coupled with a Michaelis-Menten kinetics law. Approximate analytical expressions for substrate concentration, product concentration and corresponding current response have been derived for all values of parameter a using perturbation method. These results are compared with available limiting case results and are found to be in good agreement. The obtained results are valid for the whole solution domain. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 41 条
[1]   Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: Principle of the method and its application to the inlaid disk microelectrode [J].
Amatore, Christian ;
Oleinick, Alexander I. ;
Svir, Irina .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 597 (01) :69-76
[2]  
Ames W., 1977, Numerical methods for partial differential equation
[3]  
Ariel P. D., 2010, NONLINEAR SCI LETT A, V1, P43
[4]   Computational modelling of the behaviour of potentiometric membrane biosensors [J].
Baronas, R. ;
Ivanauskas, F. ;
Kulys, J. .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2007, 42 (03) :321-336
[5]   Modelling a biosensor based on the heterogeneous microreactor [J].
Baronas, R ;
Ivanauskas, F ;
Kulys, J .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1999, 25 (2-3) :245-252
[6]   MODELING OF PROCESSES IN ENZYME ELECTRODES [J].
BARTLETT, PN ;
PRATT, KFE .
BIOSENSORS & BIOELECTRONICS, 1993, 8 (9-10) :451-462
[7]   KINETIC BEHAVIOR OF ENZYMES IMMOBILIZED IN ARTIFICIAL MEMBRANES [J].
BLAEDEL, WJ ;
BOGUSLASKI, RC ;
KISSEL, TR .
ANALYTICAL CHEMISTRY, 1972, 44 (12) :2030-+
[8]   Further Comparisons of Finite Difference Schemes for Computational Modelling of Biosensors [J].
Britz, D. ;
Baronas, R. ;
Gaidamauskaite, E. ;
Ivanauskas, F. .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2009, 14 (04) :419-433
[9]  
Britz D., 1988, DIGITAL SIMULATION E
[10]   Mediated biosensors [J].
Chaubey, A ;
Malhotra, BD .
BIOSENSORS & BIOELECTRONICS, 2002, 17 (6-7) :441-456