Using Gradient-Based Information to Deal with Scalability in Multi-Objective Evolutionary Algorithms

被引:10
|
作者
Lara, Adriana [1 ]
Coello Coello, Carlos A. [1 ]
Schuetze, Oliver [1 ]
机构
[1] CINVESTAV IPN, Dept Comp, Mexico City 07360, DF, Mexico
关键词
OPTIMIZATION;
D O I
10.1109/CEC.2009.4982925
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work introduces a hybrid between an elitist multi-objective evolutionary algorithm and a gradient-based descent method, which is applied only to certain (selected) solutions. Our proposed approach requires a low number of objective function evaluations to converge to a few points in the Pareto front. Then, the rest of the Pareto front is reconstructed using a method based on rough sets theory, which also requires a low number of objective function evaluations. Emphasis is placed on the effectiveness of our proposed hybrid approach when increasing the number of decision variables, and a study of the scalability of our approach is also presented.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 50 条
  • [1] Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms
    Hu, XL
    Huang, ZC
    Wang, ZF
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 870 - 877
  • [2] On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms
    Lara, Adriana
    Schuetze, Oliver
    Coello, Carlos A. Coello
    EVOLVE - A BRIDGE BETWEEN PROBABILITY, SET ORIENTED NUMERICS AND EVOLUTIONARY COMPUTATION, 2013, 447 : 305 - +
  • [3] Seeding the Initial Population of a Multi-Objective Evolutionary Algorithm using Gradient-Based Information
    Hernandez-Diaz, Alfredo G.
    Coello Coello, Carlos A.
    Perez, Fatima
    Caballero, Rafael
    Molina, Julian
    Santana-Quintero, Luis V.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 1617 - +
  • [4] Gradient-based algorithms for multi-objective bi-level optimization
    Xinmin Yang
    Wei Yao
    Haian Yin
    Shangzhi Zeng
    Jin Zhang
    ScienceChina(Mathematics), 2024, 67 (06) : 1419 - 1438
  • [5] Gradient-based algorithms for multi-objective bi-level optimization
    Yang, Xinmin
    Yao, Wei
    Yin, Haian
    Zeng, Shangzhi
    Zhang, Jin
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (06) : 1419 - 1438
  • [6] Using Gradient Information for Multi-objective Problems in the Evolutionary Context
    Lara, Adriana
    Coello Coello, Carlos A.
    Schuetze, Oliver
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2011 - 2014
  • [7] Robustness using Multi-Objective Evolutionary Algorithms
    Gaspar-Cunha, A.
    Covas, J. A.
    APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, : 353 - +
  • [8] Multi-objective optimization of anaerobic digestion process using a gradient-based algorithm
    Kegl, Tina
    Kralj, Anita Kovac
    ENERGY CONVERSION AND MANAGEMENT, 2020, 226
  • [9] Parallelization of multi-objective evolutionary algorithms using clustering algorithms
    Streichert, F
    Ulmer, H
    Zell, A
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 92 - 107
  • [10] Gradient-based multi-objective optimization with applications to waterflooding optimization
    Liu, Xin
    Reynolds, Albert C.
    COMPUTATIONAL GEOSCIENCES, 2016, 20 (03) : 677 - 693