In situ TEM tensile testing on high-entropy alloy coating by laser surface alloying

被引:19
作者
Cai, Zhaobing [1 ]
Cui, Xiufang [1 ]
Jin, Guo [1 ]
Lu, Binwen [1 ]
Zhang, Danli [2 ,3 ]
Zhang, Zhanming [2 ,3 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ,Inst Surface Interface Sci & Technol, Harbin 150001, Peoples R China
[2] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Hysitron Appl Res Ctr China, Xian 710049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
In situ TEM; Tensile; Fracture; High-entropy alloy coating; Laser surface alloying; DEFORMATION; BEHAVIOR; NANOINDENTATION; MICROSTRUCTURE; PLASTICITY; STEEL; LIMIT;
D O I
10.1016/j.jallcom.2017.03.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A unique technique, in situ TEM tensile testing, was used to investigate the fracture process of Ni-Cr-CoTi-V-Al high-entropy alloy coating with complex phases. The results of in situ TEM observation indicated that during the fracture process, dislocations get together in the interface between BCC HEA phase and (Co, Ni) Ti-2 compounds and crack propagation happens along the phase interface, leading to the final rupture, which proves that the phase interface may be the probable failure place. Also, the fracture strength and Young's modulus were calculated according to the stress-strain curve from the in situ TEM tensile testing. The stress-strain curve shows a good linearity, confirming the brittle failure. The fracture strength is calculated to be similar to 3.3 GPa and the fracture strain is measured to be similar to 3.1%. The Young's modulus of the tensile sample is calculated to be similar to 102 GPa, quite close to that of bulk titanium alloy. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:380 / 384
页数:5
相关论文
共 31 条
[1]   Ultrahigh Tensile Strength Nanowires with a Ni/Ni-Au Multilayer Nanocrystalline Structure [J].
An, Boo Hyun ;
Jeon, In Tak ;
Seo, Jong-Hyun ;
Ahn, Jae-Pyoung ;
Kraft, Oliver ;
Choi, In-Suk ;
Kim, Young Keun .
NANO LETTERS, 2016, 16 (06) :3500-3506
[2]   Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying [J].
Cai, Zhaobing ;
Jin, Guo ;
Cui, Xiufang ;
Liu, Zhe ;
Zheng, Wei ;
Li, Yang ;
Wang, Liquan .
MATERIALS CHARACTERIZATION, 2016, 120 :229-233
[3]   Dislocation starvation and exhaustion hardening in Mo alloy nanofibers [J].
Chisholm, C. ;
Bei, H. ;
Lowry, M. B. ;
Oh, J. ;
Asif, S. A. Syed ;
Warren, O. L. ;
Shan, Z. W. ;
George, E. P. ;
Minor, A. M. .
ACTA MATERIALIA, 2012, 60 (05) :2258-2264
[4]   Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding [J].
Deng, Qingsong ;
Cheng, Yongqiang ;
Yue, Yonghai ;
Zhang, Lei ;
Zhang, Ze ;
Han, Xiaodong ;
Ma, Evan .
ACTA MATERIALIA, 2011, 59 (17) :6511-6518
[5]   Reinforcement mechanism and wear resistance of Al2O3/Fe-Cr-Mo steel composite coating produced by laser cladding [J].
Duan, Xiaoxi ;
Gao, Shiyou ;
Dong, Qi ;
Zhou, Yefei ;
Xi, Mingzhe ;
Xian, Xipan ;
Wang, Bin .
SURFACE & COATINGS TECHNOLOGY, 2016, 291 :230-238
[6]   Effect of Nb and CeO2 on the mechanical and tribology properties of Co-based cladding coatings [J].
Fan, Yang ;
Jin, Guo ;
Cui, Xiufang ;
Li, Yang ;
Gao, Zonghong .
SURFACE & COATINGS TECHNOLOGY, 2016, 288 :25-29
[7]   A precipitation-hardened high-entropy alloy with outstanding tensile properties [J].
He, J. Y. ;
Wang, H. ;
Huang, H. L. ;
Xu, X. D. ;
Chen, M. W. ;
Wu, Y. ;
Liu, X. J. ;
Nieh, T. G. ;
An, K. ;
Lu, Z. P. .
ACTA MATERIALIA, 2016, 102 :187-196
[8]   Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films [J].
Hosseinian, Ehsan ;
Pierron, Olivier N. .
NANOSCALE, 2013, 5 (24) :12532-12541
[9]   CRYSTAL-TO-AMORPHOUS TRANSFORMATION OF NITI INDUCED BY COLD-ROLLING [J].
KOIKE, J ;
PARKIN, DM ;
NASTASI, M .
JOURNAL OF MATERIALS RESEARCH, 1990, 5 (07) :1414-1418
[10]   Quantitative in situ nanoindentation in an electron microscope [J].
Minor, AM ;
Morris, JW ;
Stach, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (11) :1625-1627