ON THE LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR A NONLINEAR ELLIPTIC SYSTEM

被引:18
作者
Sato, Yohei [1 ]
Wang, Zhi-Qiang [2 ,3 ,4 ]
机构
[1] Osaka City Univ, Grad Sch Sci, Adv Math Inst, Smiyoshi Ku, Osaka 5588585, Japan
[2] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Nonlinear Schrodinger system; sign-changing solutions; multiple existence of solutions; least energy solution; BOUND-STATES; SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; GROUND-STATES; WAVES;
D O I
10.3934/dcds.2015.35.2151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, as bound state solutions we consider least energy sign-changing solutions to a nonlinear elliptic system which consists of N-equations defined on a bounded domain Q. For any subset K subset of {1, ... , N}, we show the existence of sign-changing solution (u) over right arrow = (u(1), ... , u(n)) such that, for i is an element of K, u(i) are sign-changing functions that change sign exactly once in Omega, and, for i is not an element of K, u(i) are one sign functions. We give a variational characterization of such solutions on modified Nehari type constrained sets.
引用
收藏
页码:2151 / 2164
页数:14
相关论文
共 26 条
[1]   Multi-bump solitons to linearly coupled systems of nonlinear Schrodinger equations [J].
Ambrosetti, A. ;
Colorado, E. ;
Ruiz, D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :85-112
[2]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[3]   Bound states for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Wang, Zhi-Qiang ;
Wei, Juncheng .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2007, 2 (02) :353-367
[4]  
Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
[5]   A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system [J].
Bartsch, Thomas ;
Dancer, E. Norman ;
Wang, Zhi-Qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :345-361
[6]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[7]   Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates [J].
Chang, SM ;
Lin, CS ;
Lin, TC ;
Lin, WW .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 196 (3-4) :341-361
[8]   Nehari's problem and competing species systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (06) :871-888
[9]   A priori bounds versus multiple existence of positive solutions for a nonlinear Schrodinger system [J].
Dancer, E. N. ;
Wei, Juncheng ;
Weth, Tobias .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03) :953-969
[10]   Spike's in two coupled nonlinear Schrodinger equations [J].
Lin, TC ;
Wei, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (04) :403-439