Tri-layer contact photolithography process for high-resolution lift-off

被引:5
作者
Northfield, Howard [1 ]
Krupin, Oleksiy [1 ,2 ]
Tait, Niall [3 ]
Berini, Pierre [1 ,2 ,4 ]
机构
[1] Univ Ottawa, Ctr Res Photon, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[3] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
[4] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
关键词
Photolithography; High-resolution; Lift-off; Antireflection coating;
D O I
10.1016/j.mee.2021.111545
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel UV contact lithography process is presented to realize diffraction-limited dimensions in the patterning and lift-off of structures. The process involves a tri-layer stack comprising a bottom layer of lift-off resist (LOR), followed by a back anti-reflection coating (BARC), capped by a layer of I-line optimised photo resist (PR). This stack enables diffraction-limited exposure of PR in a contact mask aligner. The BARC layer decouples the development of the PR and LOR layers into independent process steps that may be optimised separately. It also strengthens structurally the lithographic stack, reducing the likelihood of PR collapse, particularly for small features in close proximity. Moreover, the process may be applied to transparent (e.g., SiO2) or opaque (e.g., Si) substrates without change. We demonstrate the process by realising Au grating couplers aligned to underlying Au plasmonic waveguides on a multilayer substrate supporting Bloch long-range surface plasmons. The grating couplers consist of 16 unit cells arranged in a period of 980 nm, each unit cell comprising a 170 nm thick Au ridge and a duty cycle of similar to 50%. Physical and optical measurements are provided to validate the process.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Integrated optical components utilizing long-range surface plasmon polaritons [J].
Boltasseva, A ;
Nikolajsen, T ;
Leosson, K ;
Kjaer, K ;
Larsen, MS ;
Bozhevolnyi, SI .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :413-422
[2]  
Brewer Science, 2020, XHRIC 1 LIN ANT COAT
[3]   Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons [J].
Charbonneau, R ;
Lahoud, N .
OPTICS EXPRESS, 2005, 13 (03) :977-984
[4]   Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels [J].
Chiu, Charles ;
Lisicka-Skrzek, Ewa ;
Tait, R. Niall ;
Berini, Pierre .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (04) :729-735
[5]   Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS processes [J].
Dabos, George ;
Manolis, Athanasios ;
Tsiokos, Dimitris ;
Ketzaki, Dimitra ;
Chatzianagnostou, Evangelia ;
Markey, Laurent ;
Rusakov, Dmitrii ;
Weeber, Jean-Claude ;
Dereux, Alain ;
Giesecke, Anna-Lena ;
Porschatis, Caroline ;
Wahlbrink, Thorsten ;
Chmielak, Bartos ;
Pleros, Nikos .
SCIENTIFIC REPORTS, 2018, 8
[6]   Ultralow-Loss CMOS Copper Plasmonic Waveguides [J].
Fedyanin, Dmitry Yu. ;
Yakubovsky, Dmitry I. ;
Kirtaev, Roman V. ;
Volkov, Valentyn S. .
NANO LETTERS, 2016, 16 (01) :362-366
[7]   Bloch Long-Range Surface Plasmon Polaritons on Metal Stripe Waveguides on a Multilayer Substrate [J].
Fong, Norman R. ;
Menotti, Matteo ;
Lisicka-Skrzek, Ewa ;
Northfield, Howard ;
Olivieri, Anthony ;
Tait, Niall ;
Liscidin, Marco ;
Berini, Pierre .
ACS PHOTONICS, 2017, 4 (03) :593-599
[8]   Nanofabrication of plasmonic structures on insulating substrates by resist-on-metal bilayer lift-off [J].
Hahn, Choloong ;
Amyot-Bourgeois, Maude ;
Al-Shehab, Maryam ;
Northfield, Howard ;
Choi, Youngsun ;
Song, Seok Ho ;
Tait, R. Niall ;
Berini, Pierre .
NANOTECHNOLOGY, 2019, 30 (05)
[9]   Fabrication of a plasmonic modulator incorporating an overlaid grating coupler [J].
Hassan, Sa'ad ;
Lisicka-Skrzek, Ewa ;
Olivieri, Anthony ;
Tait, R. Niall ;
Berini, Pierre .
NANOTECHNOLOGY, 2014, 25 (49)
[10]   Grating couplers for (Bloch) long-range surface plasmons on metal stripe waveguides [J].
Khodami, Maryam ;
Berini, Pierre .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (07) :1921-1930