Making shipping greener: comparative study between organic fluids and water for Rankine cycle waste heat recovery

被引:19
作者
de la Fuente, Santiago Suarez [1 ]
Greig, Alistair R. [1 ]
机构
[1] UCL, Dept Mech Engn, London WC1E 7JE, England
关键词
LOW-GRADE HEAT; WORKING FLUIDS; POWER; OPTIMIZATION; DECOMPOSITION; CONVERSION; ENERGY; PERFORMANCE; ENGINES; DESIGN;
D O I
10.1080/20464177.2015.1077601
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The largest source of energy loss in ships is found in the propulsion system. This study focuses on the concept of managing waste heat energy from the exhaust gases of the main engine. Using waste heat recovery systems (WHRSs) to make shipping more efficient represents a good area of opportunity for achieving the shipping industry's green objectives. Organic Rankine cycles have been applied in land-based systems before, showing improvements in performance when compared with the traditional Rankine cycle. As marine environmental rules requiring greener vessels and engine thermal efficiency continue to increase, thus reducing the available energy in the exhaust, organic Rankine cycle WHRSs become a more attractive option. The proposed WHRS was modelled using MATLAB for a typical ship installation with a slow speed diesel engine and a WHRS installed after the steam boiler in the exhaust gas system. The energy recovered from the exhaust gas flow is transformed via the thermodynamic cycle - coupled with a generator - into electricity, which helps to cover the ship's demand. The MATLAB code found the highest electric power output, hence the maximum fuel and CO2 emission savings possible, by v varying the WHRS HP. Water and four organic fluids were considered and their performance was compared over a range of different engine operating conditions. A representative ship operating profile and a typical marine generator were used to measure CO2 emission reductions. The implications of having flammable organic fluids on board are also briefly discussed. This work demonstrates that a simple organic Rankine cycle can be more effective than a steam cycle for the same engine operating conditions.
引用
收藏
页码:70 / 84
页数:15
相关论文
共 50 条
  • [31] Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle
    Benato, Alberto
    Macor, Alarico
    ENERGIES, 2017, 10 (03)
  • [32] DYNAMIC MODEL OF SUPERCRITICAL ORGANIC RANKINE CYCLE WASTE HEAT RECOVERY SYSTEM FOR INTERNAL COMBUSTION ENGINE
    Chowdhury, Jahedul Islam
    Bao Kha Nguyen
    Thornhill, David
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2017, 18 (04) : 589 - 601
  • [33] Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
    Yang, Yuchen
    Ma, Lin
    Yu, Jie
    Zhao, Zewen
    You, Pengfei
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (03) : 1153 - 1179
  • [34] Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle
    Kallis, George
    Roumpedakis, Tryfon C.
    Pallis, Platon
    Koutantzi, Zoi
    Charalampidis, Antonios
    Karellas, Sotirios
    ENERGY, 2022, 257
  • [35] A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine
    Liu, Xiangyang
    Manh Quang Nguyen
    Chu, Jianchu
    Lan, Tian
    He, Maogang
    JOURNAL OF CLEANER PRODUCTION, 2020, 265
  • [36] A recent review of waste heat recovery by Organic Rankine Cycle
    Mahmoudi, A.
    Fazli, M.
    Morad, M. R.
    APPLIED THERMAL ENGINEERING, 2018, 143 : 660 - 675
  • [37] Compact Modelling of Organic Rankine Cycle for Waste Heat Recovery
    Liu, Kailong
    Li, Kang
    Zhang, Jianhua
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 1263 - 1268
  • [38] Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery
    Heberle, Florian
    Brueggemann, Dieter
    ENERGIES, 2016, 9 (04)
  • [39] Performance assessment of steam Rankine cycle and sCO2 Brayton cycle for waste heat recovery in a cement plant: A comparative study for supercritical fluids
    Kizilkan, Onder
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (15) : 12329 - 12343
  • [40] Optimization of an Organic Rankine Cycle Through a Control Strategy for Waste Heat Recovery
    Silva-Llanca, Luis
    Ponce, Carolina V.
    Araya, Manuel
    Diaz, Andres J.
    PROCEEDINGS OF THE 17TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM 2018), 2018, : 788 - 794