Making shipping greener: comparative study between organic fluids and water for Rankine cycle waste heat recovery

被引:19
|
作者
de la Fuente, Santiago Suarez [1 ]
Greig, Alistair R. [1 ]
机构
[1] UCL, Dept Mech Engn, London WC1E 7JE, England
关键词
LOW-GRADE HEAT; WORKING FLUIDS; POWER; OPTIMIZATION; DECOMPOSITION; CONVERSION; ENERGY; PERFORMANCE; ENGINES; DESIGN;
D O I
10.1080/20464177.2015.1077601
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The largest source of energy loss in ships is found in the propulsion system. This study focuses on the concept of managing waste heat energy from the exhaust gases of the main engine. Using waste heat recovery systems (WHRSs) to make shipping more efficient represents a good area of opportunity for achieving the shipping industry's green objectives. Organic Rankine cycles have been applied in land-based systems before, showing improvements in performance when compared with the traditional Rankine cycle. As marine environmental rules requiring greener vessels and engine thermal efficiency continue to increase, thus reducing the available energy in the exhaust, organic Rankine cycle WHRSs become a more attractive option. The proposed WHRS was modelled using MATLAB for a typical ship installation with a slow speed diesel engine and a WHRS installed after the steam boiler in the exhaust gas system. The energy recovered from the exhaust gas flow is transformed via the thermodynamic cycle - coupled with a generator - into electricity, which helps to cover the ship's demand. The MATLAB code found the highest electric power output, hence the maximum fuel and CO2 emission savings possible, by v varying the WHRS HP. Water and four organic fluids were considered and their performance was compared over a range of different engine operating conditions. A representative ship operating profile and a typical marine generator were used to measure CO2 emission reductions. The implications of having flammable organic fluids on board are also briefly discussed. This work demonstrates that a simple organic Rankine cycle can be more effective than a steam cycle for the same engine operating conditions.
引用
收藏
页码:70 / 84
页数:15
相关论文
共 50 条
  • [1] A comparative analysis of dynamic evaporator models for organic Rankine cycle waste heat recovery systems
    Xu, Bin
    Rathod, Dhruvang
    Yebi, Adamu
    Onori, Simona
    Filipi, Zoran
    Hoffman, Mark
    APPLIED THERMAL ENGINEERING, 2020, 165 (165)
  • [2] Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry
    Peris, Bernardo
    Navarro-Esbri, Joaquin
    Moles, Francisco
    Mota-Babiloni, Adrian
    ENERGY, 2015, 85 : 534 - 542
  • [3] Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery
    Dai, Yiping
    Wang, Jiangfeng
    Gao, Lin
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (03) : 576 - 582
  • [4] Study of Gasoline Engine Waste Heat Recovery by Organic Rankine Cycle
    Wang, E. H.
    Zhang, H. G.
    Fan, B. Y.
    Liang, H.
    Ouyang, M. G.
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 6071 - +
  • [5] Review of organic Rankine cycle (ORC) architectures for waste heat recovery
    Lecompte, Steven
    Huisseune, Henk
    van den Broek, Martijn
    Vanslambrouck, Bruno
    De Paepe, Michel
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 47 : 448 - 461
  • [6] THERMODYNAMIC ANALYSIS AND COMPARISON STUDY OF AN ORGANIC RANKINE CYCLE (ORC) AND A KALINA CYCLE FOR WASTE HEAT RECOVERY OF COMPRESSOR INTERCOOLING
    Wang, Jianyong
    Wang, Jiangfeng
    Zhao, Pan
    Dai, Yiping
    Peng, Yan
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 3B, 2014,
  • [7] Dynamic test on waste heat recovery system with organic Rankine cycle
    Wang Zhi-qi
    Liu Li-wen
    Xia Xiao-xia
    Zhou Nai-jun
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2014, 21 (12) : 4607 - 4612
  • [8] Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines
    Carcasci, Carlo
    Ferraro, Riccardo
    Miliotti, Edoardo
    ENERGY, 2014, 65 : 91 - 100
  • [9] A low-grade heat Organic Rankine Cycle driven by hybrid solar collectors and a waste heat recovery system
    Gomaa, Mohamed R.
    Mustafa, Ramadan J.
    Al-Dhaifallah, Mujahed
    Rezk, Hegazy
    ENERGY REPORTS, 2020, 6 : 3425 - 3445
  • [10] Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery
    Li, You-Rong
    Du, Mei-Tang
    Wu, Chun-Mei
    Wu, Shuang-Ying
    Liu, Chao
    ENERGY, 2014, 77 : 509 - 519