On the scaling properties of the period-increment scenario in dynamical systems

被引:14
作者
Avrutin, V [1 ]
Schanz, M [1 ]
机构
[1] Univ Stuttgart, Inst Parallel & Distributed High Performance Syst, D-70565 Stuttgart, Germany
关键词
D O I
10.1016/S0960-0779(99)00071-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two one-dimensional dynamical systems discrete in time are presented, where the variation of one parameter causes a sequence of global bifurcations; at each bifurcation the period increases by a constant value (period-increment scenario, usually denoted as a period-adding scenario). We determine all the bifurcation points and the scaling constants of the period-increment scenario analytically. A re-injection mechanism, leading to the period-increment scenario, is discussed. It will be shown, that in systems with more than one parameter the scaling constants can depend on the values of the parameters. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1949 / 1955
页数:7
相关论文
共 24 条
[1]  
Bogoroditskii A. G., 1990, Soviet Physics - Technical Physics, V35, P1445
[2]  
CHIN W, 1994, PHYS REV E, V50
[3]  
CHUA LO, 1993, IEEE T CIRCUITS SYST, V40, P10
[4]   RESONANCES IN PERIODICALLY FORCED EXCITABLE SYSTEMS [J].
DOLNIK, M ;
MAREK, M ;
EPSTEIN, IR .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (08) :3218-3224
[5]   REGULAR WINDOW STRUCTURE OF A DOUBLE-WELL DUFFING OSCILLATOR [J].
ENGLISCH, V ;
LAUTERBORN, W .
PHYSICAL REVIEW A, 1991, 44 (02) :916-924
[6]   CRISIS AND TOPOLOGICAL-ENTROPY [J].
FAN, YS ;
CHAY, TR .
PHYSICAL REVIEW E, 1995, 51 (02) :1012-1019
[7]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[8]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706
[9]   EXCITABLE CHEMICAL-REACTION SYSTEMS IN A CONTINUOUS STIRRED TANK REACTOR [J].
FINKEOVA, J ;
DOLNIK, M ;
HRUDKA, B ;
MAREK, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (10) :4110-4115
[10]   ANALYTICAL DETERMINATION OF BIFURCATIONS IN AN IMPACT OSCILLATOR [J].
FOALE, S .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1683) :353-364