Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas

被引:28
作者
Totorica, Samuel R. [1 ,2 ,3 ]
Abel, Tom [1 ,2 ,4 ]
Fiuza, Frederico [3 ]
机构
[1] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, High Energy Dens Sci Div, Menlo Pk, CA 94025 USA
[4] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
关键词
ACCELERATION; SIMULATIONS; CODE;
D O I
10.1103/PhysRevLett.116.095003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The possibility of studying nonthermal electron energization in laser-driven plasma experiments of magnetic reconnection is studied using two- and three-dimensional particle-in-cell simulations. It is demonstrated that nonthermal electrons with energies more than an order of magnitude larger than the initial thermal energy can be produced in plasma conditions currently accessible in the laboratory. Electrons are accelerated by the reconnection electric field, being injected at varied distances from the X points, and in some cases trapped in plasmoids, before escaping the finite-sized system. Trapped electrons can be further energized by the electric field arising from the motion of the plasmoid. This acceleration gives rise to a nonthermal electron component that resembles a power-law spectrum, containing up to similar to 8% of the initial energy of the interacting electrons and similar to 24% of the initial magnetic energy. Estimates of the maximum electron energy and of the plasma conditions required to observe suprathermal electron acceleration are provided, paving the way for a new platform for the experimental study of particle acceleration induced by reconnection.
引用
收藏
页数:5
相关论文
共 36 条
[1]   The mechanisms of electron heating and acceleration during magnetic reconnection [J].
Dahlin, J. T. ;
Drake, J. F. ;
Swisdak, M. .
PHYSICS OF PLASMAS, 2014, 21 (09)
[2]   Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma Interaction [J].
Dong, Quan-Li ;
Wang, Shou-Jun ;
Lu, Quan-Ming ;
Huang, Can ;
Yuan, Da-Wei ;
Liu, Xun ;
Lin, Xiao-Xuan ;
Li, Yu-Tong ;
Wei, Hui-Gang ;
Zhong, Jia-Yong ;
Shi, Jian-Rong ;
Jiang, Shao-En ;
Ding, Yong-Kun ;
Jiang, Bo-Bin ;
Du, Kai ;
He, Xian-Tu ;
Yu, M. Y. ;
Liu, C. S. ;
Wang, Shui ;
Tang, Yong-Jian ;
Zhu, Jian-Qiang ;
Zhao, Gang ;
Sheng, Zheng-Ming ;
Zhang, Jie .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[3]   Electron acceleration from contracting magnetic islands during reconnection [J].
Drake, J. F. ;
Swisdak, M. ;
Che, H. ;
Shay, M. A. .
NATURE, 2006, 443 (7111) :553-556
[4]   Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes [J].
Fiksel, G. ;
Fox, W. ;
Bhattacharjee, A. ;
Barnak, D. H. ;
Chang, P. -Y. ;
Germaschewski, K. ;
Hu, S. X. ;
Nilson, P. M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (10)
[5]   Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators [J].
Fonseca, R. A. ;
Vieira, J. ;
Fiuza, F. ;
Davidson, A. ;
Tsung, F. S. ;
Mori, W. B. ;
Silva, L. O. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
[6]   One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations [J].
Fonseca, R. A. ;
Martins, S. F. ;
Silva, L. O. ;
Tonge, J. W. ;
Tsung, F. S. ;
Mori, W. B. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
[7]  
Fonseca RA, 2002, LECT NOTES COMPUT SC, V2331, P342
[8]   Magnetic reconnection in high-energy-density laser-produced plasmas [J].
Fox, W. ;
Bhattacharjee, A. ;
Germaschewski, K. .
PHYSICS OF PLASMAS, 2012, 19 (05)
[9]   Fast Magnetic Reconnection in Laser-Produced Plasma Bubbles [J].
Fox, W. ;
Bhattacharjee, A. ;
Germaschewski, K. .
PHYSICAL REVIEW LETTERS, 2011, 106 (21)
[10]   The process of electron acceleration during collisionless magnetic reconnection [J].
Fu, XR ;
Lu, QM ;
Wang, S .
PHYSICS OF PLASMAS, 2006, 13 (01) :1-7