PERSISTENCE PROPERTY IN WEIGHTED SOBOLEV SPACES FOR NONLINEAR DISPERSIVE EQUATIONS

被引:3
作者
Carvajal, X. [1 ]
Neves, W. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Ctr Tecnol, Ilha Fundao, Av Athos da Silveira Ramos 149,Cidade Univ, BR-21941972 Rio de Janeiro, RJ, Brazil
关键词
Nonlinear dispersive equations; nonlinear Schrodinger equation; generalized Korteweg-de Vries equation; initial value problem; weighted Sobolev spaces;
D O I
10.1090/qam/1387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the Abstract Interpolation Lemma proved by the authors in Carvajal and Neves (2010). Using this extension, we show in a more general context the persistence property for the generalized Korteweg-de Vries equation in the weighted Sobolev space with low regularity in the weight. The method used can be applied for other nonlinear dispersive models, for instance the multidimensional nonlinear Schrodinger equation.
引用
收藏
页码:493 / 510
页数:18
相关论文
共 14 条
[1]  
Bergh Joran, 1976, GRUND MATH WISS, V223
[2]   Persistence of solutions to higher order nonlinear Schrodinger equation [J].
Carvajal, X. ;
Neves, W. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) :2214-2236
[3]  
HAYASHI N., 1988, FUNKC EKVACIOJ-SER I, V31, P363
[4]   NONLINEAR EVOLUTION-EQUATIONS AND ANALYTICITY .1. [J].
KATO, T ;
MASUDA, K .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (06) :455-467
[5]  
Kato Tosio, 1983, ADV MATH S, V8, P93
[6]   On the Persistent Properties of Solutions to Semi-Linear Schrodinger Equation [J].
Nahas, J. ;
Ponce, G. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (10) :1208-1227
[7]  
Nahas J., 2010, THESIS U CALIFORNIA
[8]  
Nahas J., 2011, RIMS KOKYUROKU BESSA, P23
[9]  
Nahas J, 2012, ADV DIFFERENTIAL EQU, V17, P833
[10]  
Ozawa T., 1998, Differ. Integral Equ, V11, P201