mipfp: An R Package for Multidimensional Array Fitting and Simulating Multivariate Bernoulli Distributions

被引:32
作者
Barthelemy, Johan [1 ]
Suesse, Thomas [2 ]
机构
[1] Univ Wollongong, SMART Infrastruct Facil, Wollongong, NSW 2522, Australia
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
关键词
iterative proportional fitting procedure; maximum likelihood; minimum chi-square; minimum least squares; multivariate Bernoulli distributions; R; MODELS; ASSOCIATION;
D O I
10.18637/jss.v086.c02
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper explains the mipfp package for R with the core functionality of updating an d-dimensional array with respect to given target marginal distributions, which in turn can be multi-dimensional. The implemented methods include the iterative proportional fitting procedure (IPFP), the maximum likelihood method, the minimum chi-square and least squares procedures. The package also provides an application of the IPFP to simulate data from a multivariate Bernoulli distribution. The functionalities of the package are illustrated through two practical examples: the update of a 3-dimensional contingency table to match the targets for a synthetic population and the estimation and simulation of the joint distribution of the binary attribute impaired pulmonary function as used by Qaqish, Zink, and Preisser (2012).
引用
收藏
页码:1 / 20
页数:20
相关论文
共 31 条
[1]  
Barthelemy J, 2012, TECHNICAL REPORT
[2]  
Barthelemy J, 2018, MIPFP MULTIDIMENSION
[3]   Synthetic Population Generation Without a Sample [J].
Barthelemy, Johan ;
Toint, Philippe L. .
TRANSPORTATION SCIENCE, 2013, 47 (02) :266-279
[4]   Creating synthetic baseline populations [J].
Beckman, RJ ;
Baggerly, KA ;
McKay, MD .
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 1996, 30 (06) :415-429
[5]   Multiple marginal independence testing for pick any/C variables [J].
Bilder, CR ;
Loughin, TM ;
Nettleton, D .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2000, 29 (04) :1285-1316
[6]  
Blocker A.W., 2016, Ipfp: Fast implementation of the iterative proportional fitting procedure in c
[7]   On a least squares adjustment of a sampled frequency table when the expected marginal totals are known [J].
Deming, WE ;
Stephan, FF .
ANNALS OF MATHEMATICAL STATISTICS, 1940, 11 :427-444
[8]  
Dobra A., 2001, STAT J UN EC COMMISS, V18, P363
[9]  
Fienberg S.E., 1999, STAT DATA PROTECTION, P115
[10]  
Freeman DH, 1976, P AM STATIST ASS SOC, P330