Database-friendly random projections: Johnson-Lindenstrauss with binary coins

被引:773
作者
Achlioptas, D [1 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
关键词
D O I
10.1016/S0022-0000(03)00025-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A classic result of Johnson and Lindenstrauss asserts that any set of n points in d-dimensional Euclidean space can be embedded into k-dimensional Euclidean space-where k is logarithmic in n and independent of d-so that all pairwise distances are maintained within an arbitrarily small factor. All known constructions of such embeddings involve projecting the n points onto a spherically random k-dimensional hyperplane through the origin. We give two constructions of such embeddings with the property that all elements of the projection matrix belong in {-1,0,+1}. Such constructions are particularly well suited for database environments, as the computation of the embedding reduces to evaluating a single aggregate over k random partitions of the attributes. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:671 / 687
页数:17
相关论文
共 16 条
  • [1] ACHLIOPTAS D, 2001, 20 ANN S PRINC DAT S, P274
  • [2] ARORA S, 2001, 33 ANN ACM S THEOR C, P247
  • [3] Arriaga R. I., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P616, DOI 10.1109/SFFCS.1999.814637
  • [4] Dasgupta S., 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), P634, DOI 10.1109/SFFCS.1999.814639
  • [5] Dasgupta S, 1999, 99006 UC BERK
  • [6] THE JOHNSON-LINDENSTRAUSS LEMMA AND THE SPHERICITY OF SOME GRAPHS
    FRANKL, P
    MAEHARA, H
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (03) : 355 - 362
  • [7] Indyk P., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P604, DOI 10.1145/276698.276876
  • [8] Stable distributions, pseudorandom generators, embeddings and data stream computation
    Indyk, P
    [J]. 41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 189 - 197
  • [9] Johnson W. B., 1984, CONTEMP MATH, V26, DOI [DOI 10.1090/CONM/026/737400, 10.1090/conm/026/737400]
  • [10] KLEINBERG JM, 1997, 29 ANN ACM S THEOR C, P599